Structure and Dynamics of Fractal Media

Structure and Dynamics of Fractal Media PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 215

Get Book Here

Book Description

Structure and Dynamics of Fractal Media

Structure and Dynamics of Fractal Media PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 215

Get Book Here

Book Description


Disordered Systems : Structure and Dynamics of Fractal Media

Disordered Systems : Structure and Dynamics of Fractal Media PDF Author: A. Fontana
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Structure and Dynamics of Fractal Media

Structure and Dynamics of Fractal Media PDF Author: Università degli studi di Trento. Department of Physics
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Structure and Dynamics of Fractal Media

Structure and Dynamics of Fractal Media PDF Author: International Workshop on Disordered Systems. 4, 1991, Andalo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Dynamics of Fractal Surfaces

Dynamics of Fractal Surfaces PDF Author: Fereydoon Family
Publisher: World Scientific
ISBN: 9789810207205
Category : Science
Languages : en
Pages : 500

Get Book Here

Book Description
In the last few years there has been an explosion of activity in the field of the dynamics of fractal surfaces, which, through the convergence of important new results from computer simulations, analytical theories and experiments, has led to significant advances in our understanding of nonequilibrium surface growth phenomena. This interest in surface growth phenomena has been motivated largely by the fact that a wide variety of natural and industrial processes lead to the formation of rough surfaces and interfaces. This book presents these developments in a single volume by bringing together the works containing the most important results in the field.The material is divided into chapters consisting of reprints related to a single major topic. Each chapter has a general introduction to a particular aspect of growing fractal surfaces. These introductory parts are included in order to provide a scientific background to the papers reproduced in the main part of the chapters. They are written in a pedagogical style and contain only the most essential information. The contents of the reprints are made more accessible to the reader as they are preceded by a short description of what the editors find to be the most significant results in the paper.

Fourth International Workshop on Disordered Systems: Structure and Dynamics of Fractal Media

Fourth International Workshop on Disordered Systems: Structure and Dynamics of Fractal Media PDF Author:
Publisher:
ISBN:
Category : Fractals
Languages : en
Pages : 215

Get Book Here

Book Description


Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms

Fractal and Multifractal Facets in the Structure and Dynamics of Physiological Systems and Applications to Homeostatic Control, Disease Diagnosis and Integrated Cyber-Physical Platforms PDF Author: Paul Bogdan
Publisher: Frontiers Media SA
ISBN: 2889635317
Category :
Languages : en
Pages : 180

Get Book Here

Book Description
Widespread chronic diseases (e.g., heart diseases, diabetes and its complications, stroke, cancer, brain diseases) constitute a significant cause of rising healthcare costs and pose a significant burden on quality-of-life for many individuals. Despite the increased need for smart healthcare sensing systems that monitor / measure patients’ body balance, there is no coherent theory that facilitates the modeling of human physiological processes and the design and optimization of future healthcare cyber-physical systems (HCPS). The HCPS are expected to mine the patient’s physiological state based on available continuous sensing, quantify risk indices corresponding to the onset of abnormality, signal the need for critical medical intervention in real-time by communicating patient’s medical information via a network from individual to hospital, and most importantly control (actuate) vital health signals (e.g., cardiac pacing, insulin level, blood pressure) within personalized homeostasis. To prevent health complications, maintain good health and/or avoid fatal conditions calls for a cross-disciplinary approach to HCPS design where recent statistical-physics inspired discoveries done by collaborations between physicists and physicians are shared and enriched by applied mathematicians, control theorists and bioengineers. This critical and urgent multi-disciplinary approach has to unify the current state of knowledge and address the following fundamental challenges: One fundamental challenge is represented by the need to mine and understand the complexity of the structure and dynamics of the physiological systems in healthy homeostasis and associated with a disease (such as diabetes). Along the same lines, we need rigorous mathematical techniques for identifying the interactions between integrated physiologic systems and understanding their role within the overall networking architecture of healthy dynamics. Another fundamental challenge calls for a deeper understanding of stochastic feedback and variability in biological systems and physiological processes, in particular, and for deciphering their implications not only on how to mathematically characterize homeostasis, but also on defining new control strategies that are accounting for intra- and inter-patient specificity – a truly mathematical approach to personalized medicine. Numerous recent studies have demonstrated that heart rate variability, blood glucose, neural signals and other interdependent physiological processes demonstrate fractal and non-stationary characteristics. Exploiting statistical physics concepts, numerous recent research studies demonstrated that healthy human physiological processes exhibit complex critical phenomena with deep implications for how homeostasis should be defined and how control strategies should be developed when prolonged abnormal deviations are observed. In addition, several efforts have tried to connect these fractal characteristics with new optimal control strategies that implemented in medical devices such as pacemakers and artificial pancreas could improve the efficiency of medical therapies and the quality-of-life of patients but neglecting the overall networking architecture of human physiology. Consequently, rigorously analyzing the complexity and dynamics of physiological processes (e.g., blood glucose and its associated implications and interdependencies with other physiological processes) represents a fundamental step towards providing a quantifiable (mathematical) definition of homeostasis in the context of critical phenomena, understanding the onset of chronic diseases, predicting deviations from healthy homeostasis and developing new more efficient medical therapies that carefully account for the physiological complexity, intra- and inter-patient variability, rather than ignoring it. This Research Topic aims to open a synergetic and timely effort between physicians, physicists, applied mathematicians, signal processing, bioengineering and biomedical experts to organize the state of knowledge in mining the complexity of physiological systems and their implications for constructing more accurate mathematical models and designing QoL-aware control strategies implemented in the new generation of HCPS devices. By bringing together multi-disciplinary researchers seeking to understand the many aspects of human physiology and its complexity, we aim at enabling a paradigm shift in designing future medical devices that translates mathematical characteristics in predictable mathematical models quantifying not only the degree of homeostasis, but also providing fundamentally new control strategies within the personalized medicine era.

Fractals and Chaos

Fractals and Chaos PDF Author: Paul S. Addison
Publisher: CRC Press
ISBN: 9780849384431
Category : Science
Languages : en
Pages : 276

Get Book Here

Book Description
Fractals and Chaos: An Illustrated Course provides you with a practical, elementary introduction to fractal geometry and chaotic dynamics-subjects that have attracted immense interest throughout the scientific and engineering disciplines. The book may be used in part or as a whole to form an introductory course in either or both subject areas. A prominent feature of the book is the use of many illustrations to convey the concepts required for comprehension of the subject. In addition, plenty of problems are provided to test understanding. Advanced mathematics is avoided in order to provide a concise treatment and speed the reader through the subject areas. The book can be used as a text for undergraduate courses or for self-study.

Fourth International Workshop on Disordered Systems

Fourth International Workshop on Disordered Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 215

Get Book Here

Book Description


Disordered Materials and Interfaces: Volume 407

Disordered Materials and Interfaces: Volume 407 PDF Author: Herman Z. Cummins
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 450

Get Book Here

Book Description
This book focuses on the fractal aspects of materials and disordered systems. Disorder plays a critical role in many naturally occurring and manufactured materials, both at the microscopic level (e.g., glasses) and the macroscopic level (e.g., foams, dendritic alloys, porous rock). The book addresses the dynamical processes involved in the formation and characterization of a wide range of disordered materials. Topics include: porous media; colloids; chemical reactions; dynamical aspects of the liquid-glass transition; disordered materials and surfaces and scaling and nanostructures.