Structural refinement of single crystals using digital-large angle convergent beam electron diffraction

Structural refinement of single crystals using digital-large angle convergent beam electron diffraction PDF Author: AJM Hubert
Publisher: University of Warwick
ISBN:
Category : Science
Languages : en
Pages : 178

Get Book Here

Book Description
We explore the capability of digital-large angle convergent beam electron diffraction (D-LACBED) data for the structural refinement of single crystals. To achieve this, we use three materials as test cases. We use corundum for atomic position refi nement, copper and gallium arsenide for Debye-Waller factor (DWF) re finement. D-LACBED patterns are found to be extremely sensitive to atomic position, within 0.4 pm of reference X-ray values. The patterns are less sensitive to DWF (using the independent atom model - IAM) but nonetheless give good agreement to X-ray and Mossbauer radiation values for copper. We find the IAM to be insufficient for accurate refinement of gallium arsenide due to the influence of previously suggested strong anharmonicity and bonding within the material. Finally, we use simulation to explore the sensitivity of D-LACBED patterns through most re fineable structural parameters, providing context to the aforementioned results. During the analysis we see that higher g-vector patterns within the D-LACBED data may be more sensitive to structural parameters in general.

Convergent-beam Electron Diffraction II

Convergent-beam Electron Diffraction II PDF Author: Michiyoshi Tanaka
Publisher:
ISBN:
Category : Crystallography
Languages : en
Pages : 296

Get Book Here

Book Description


Cumulated Index Medicus

Cumulated Index Medicus PDF Author:
Publisher:
ISBN:
Category : Medicine
Languages : en
Pages : 1384

Get Book Here

Book Description


Electron Microdiffraction

Electron Microdiffraction PDF Author: J.M. Zuo
Publisher: Springer Science & Business Media
ISBN: 1489923535
Category : Science
Languages : en
Pages : 374

Get Book Here

Book Description
Much of this book was written during a sabbatical visit by J. C. H. S. to the Max Planck Institute in Stuttgart during 1991. We are therefore grateful to Professors M. Ruhle and A. Seeger for acting as hosts during this time, and to the Alexander von Humbolt Foundation for the Senior Scientist Award which made this visit possible. The Ph. D. work of one of us (J. M. Z. ) has also provided much of the background for the book, together with our recent papers with various collaborators. Of these, perhaps the most important stimulus to our work on convergent-beam electron diffraction resulted from a visit to the National Science Foundation's Electron Microscopy Facility at Arizona State University by Professor R. H(lJier in 1988, and from a return visit to Trondheim by J. C. H. S. in 1990. We are therefore particularly grateful to Professor H(lJier and his students and co-workers for their encouragement and collaboration. At ASU, we owe a particular debt of gratitude to Professor M. O'Keeffe for his encouragement. The depth of his under standing of crystal structures and his role as passionate skeptic have frequently been invaluable. Professor John Cowley has also been an invaluable sounding board for ideas, and was responsible for much of the experimental and theoretical work on coherent nanodiffraction. The sections on this topic derive mainly from collaborations by J. C. H. S. with him in the seventies.

Transmission Electron Microscopy

Transmission Electron Microscopy PDF Author: C. Barry Carter
Publisher: Springer
ISBN: 3319266519
Category : Technology & Engineering
Languages : en
Pages : 543

Get Book Here

Book Description
This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.

International Tables for Crystallography, Volume B

International Tables for Crystallography, Volume B PDF Author: Uri Shmueli
Publisher: Springer Science & Business Media
ISBN: 9781402082054
Category : Science
Languages : en
Pages : 704

Get Book Here

Book Description
International Tables for Crystallography are no longer available for purchase from Springer. For further information please contact Wiley Inc. (follow the link on the right hand side of this page). Volume B presents accounts of the numerous aspects of reciprocal space in crystallographic research. After an introductory chapter, Part 1 presents the reader with an account of structure-factor formalisms, an extensive treatment of the theory, algorithms and crystallographic applications of Fourier methods, and fundamental as well as advanced treatments of symmetry in reciprocal space. In Part 2, these general accounts are followed by detailed expositions of crystallographic statistics, the theory of direct methods, Patterson techniques, isomorphous replacement and anomalous scattering, and treatments of the role of electron microscopy and diffraction in crystal structure determination, including applications of direct methods to electron crystallography. Part 3 deals with applications of reciprocal space to molecular geometry and `best'-plane calculations, and contains a treatment of the principles of molecular graphics and modelling and their applications. A convergence-acceleration method of importance in the computation of approximate lattice sums is presented and the part concludes with a discussion of the Ewald method. Part 4 contains treatments of various diffuse-scattering phenomena arising from crystal dynamics, disorder and low dimensionality (liquid crystals), and an exposition of the underlying theories and/or experimental evidence. Polymer crystallography and reciprocal-space images of aperiodic crystals are also treated. Part 5 of the volume contains introductory treatments of the theory of the interaction of radiation with matter (dynamical theory) as applied to X-ray, electron and neutron diffraction techniques. The simplified trigonometric expressions for the structure factors in the 230 three-dimensional space groups, which appeared in Volume I of International Tables for X-ray Crystallography, are now given in Appendix 1.4.3 to Chapter 1.4 of this volume. Volume B is a vital addition to the library of scientists engaged in crystal structure determination, crystallographic computing, crystal physics and other fields of crystallographic research. Graduate students specializing in crystallography will find much material suitable for self-study and a rich source of references to the relevant literature.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2762

Get Book Here

Book Description


An Introduction to X-ray Crystallography

An Introduction to X-ray Crystallography PDF Author: Michael M. Woolfson
Publisher: Cambridge University Press
ISBN: 9780521423595
Category : Medical
Languages : en
Pages : 422

Get Book Here

Book Description
A textbook for the student beginning a serious study of X-ray crystallography.

Physics Briefs

Physics Briefs PDF Author:
Publisher:
ISBN:
Category : Physics
Languages : en
Pages : 1156

Get Book Here

Book Description


Structure Determination by X-Ray Crystallography

Structure Determination by X-Ray Crystallography PDF Author: M. Ladd
Publisher: Springer Science & Business Media
ISBN: 1461579309
Category : Science
Languages : en
Pages : 404

Get Book Here

Book Description
Crystallography may be described as the science of the structure of materi als, using this word in its widest sense, and its ramifications are apparent over a broad front of current scientific endeavor. It is not surprising, therefore, to find that most universities offer some aspects of crystallography in their undergraduate courses in the physical sciences. It is the principal aim of this book to present an introduction to structure determination by X-ray crystal lography that is appropriate mainly to both final-year undergraduate studies in crystallography, chemistry, and chemical physics, and introductory post graduate work in this area of crystallography. We believe that the book will be of interest in other disciplines, such as physics, metallurgy, biochemistry, and geology, where crystallography has an important part to play. In the space of one book, it is not possible either to cover all aspects of crystallography or to treat all the subject matter completely rigorously. In particular, certain mathematical results are assumed in order that their applications may be discussed. At the end of each chapter, a short bibliog raphy is given, which may be used to extend the scope of the treatment given here. In addition, reference is made in the text to specific sources of information. We have chosen not to discuss experimental methods extensively, as we consider that this aspect of crystallography is best learned through practical experience, but an attempt has been made to simulate the interpretive side of experimental crystallography in both examples and exercises.