Author: Giora Maymon
Publisher: Elsevier
ISBN: 0080559093
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
Probabilistic structural dynamics offers unparalleled tools for analyzing uncertainties in structural design. Once avoided because it is mathematically rigorous, this technique has recently remerged with the aide of computer software. Written by an author/educator with 40 years of experience in structural design, this user friendly manual integrates theories, formulas and mathematical models to produce a guide that will allow professionals to quickly grasp concepts and start solving problems. In this book, the author uses simple examples that provide templates for creating of more robust case studies later in the book.*Problems are presented in an easy to understand form *Practical guide to software programs to solve design problems *Packed with examples and case studies of actual projects *Classical and the new stochastic factors of safety
Structural Dynamics and Probabilistic Analysis for Engineers
Author: Giora Maymon
Publisher: Elsevier
ISBN: 0080559093
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
Probabilistic structural dynamics offers unparalleled tools for analyzing uncertainties in structural design. Once avoided because it is mathematically rigorous, this technique has recently remerged with the aide of computer software. Written by an author/educator with 40 years of experience in structural design, this user friendly manual integrates theories, formulas and mathematical models to produce a guide that will allow professionals to quickly grasp concepts and start solving problems. In this book, the author uses simple examples that provide templates for creating of more robust case studies later in the book.*Problems are presented in an easy to understand form *Practical guide to software programs to solve design problems *Packed with examples and case studies of actual projects *Classical and the new stochastic factors of safety
Publisher: Elsevier
ISBN: 0080559093
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
Probabilistic structural dynamics offers unparalleled tools for analyzing uncertainties in structural design. Once avoided because it is mathematically rigorous, this technique has recently remerged with the aide of computer software. Written by an author/educator with 40 years of experience in structural design, this user friendly manual integrates theories, formulas and mathematical models to produce a guide that will allow professionals to quickly grasp concepts and start solving problems. In this book, the author uses simple examples that provide templates for creating of more robust case studies later in the book.*Problems are presented in an easy to understand form *Practical guide to software programs to solve design problems *Packed with examples and case studies of actual projects *Classical and the new stochastic factors of safety
Bayesian Methods for Structural Dynamics and Civil Engineering
Author: Ka-Veng Yuen
Publisher: John Wiley & Sons
ISBN: 9780470824559
Category : Mathematics
Languages : en
Pages : 320
Book Description
Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen
Publisher: John Wiley & Sons
ISBN: 9780470824559
Category : Mathematics
Languages : en
Pages : 320
Book Description
Bayesian methods are a powerful tool in many areas of science and engineering, especially statistical physics, medical sciences, electrical engineering, and information sciences. They are also ideal for civil engineering applications, given the numerous types of modeling and parametric uncertainty in civil engineering problems. For example, earthquake ground motion cannot be predetermined at the structural design stage. Complete wind pressure profiles are difficult to measure under operating conditions. Material properties can be difficult to determine to a very precise level – especially concrete, rock, and soil. For air quality prediction, it is difficult to measure the hourly/daily pollutants generated by cars and factories within the area of concern. It is also difficult to obtain the updated air quality information of the surrounding cities. Furthermore, the meteorological conditions of the day for prediction are also uncertain. These are just some of the civil engineering examples to which Bayesian probabilistic methods are applicable. Familiarizes readers with the latest developments in the field Includes identification problems for both dynamic and static systems Addresses challenging civil engineering problems such as modal/model updating Presents methods applicable to mechanical and aerospace engineering Gives engineers and engineering students a concrete sense of implementation Covers real-world case studies in civil engineering and beyond, such as: structural health monitoring seismic attenuation finite-element model updating hydraulic jump artificial neural network for damage detection air quality prediction Includes other insightful daily-life examples Companion website with MATLAB code downloads for independent practice Written by a leading expert in the use of Bayesian methods for civil engineering problems This book is ideal for researchers and graduate students in civil and mechanical engineering or applied probability and statistics. Practicing engineers interested in the application of statistical methods to solve engineering problems will also find this to be a valuable text. MATLAB code and lecture materials for instructors available at http://www.wiley.com/go/yuen
Probabilistic Structural Dynamics
Author: Yu-Kweng Lin
Publisher: McGraw Hill Professional
ISBN: 9780071438001
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
Probabilistic structural dynamics is a new approach to building calculations that satisfy safety requirements while at the same time driving new efficiencies. This text provides a tutorial to these new methods.
Publisher: McGraw Hill Professional
ISBN: 9780071438001
Category : Technology & Engineering
Languages : en
Pages : 564
Book Description
Probabilistic structural dynamics is a new approach to building calculations that satisfy safety requirements while at the same time driving new efficiencies. This text provides a tutorial to these new methods.
Computational Structural Dynamics and Earthquake Engineering
Author: Manolis Papadrakakis
Publisher: CRC Press
ISBN: 020388163X
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam
Publisher: CRC Press
ISBN: 020388163X
Category : Technology & Engineering
Languages : en
Pages : 672
Book Description
The increasing necessity to solve complex problems in Structural Dynamics and Earthquake Engineering requires the development of new ideas, innovative methods and numerical tools for providing accurate numerical solutions in affordable computing times. This book presents the latest scientific developments in Computational Dynamics, Stochastic Dynam
Engineering Design Reliability Handbook
Author: Efstratios Nikolaidis
Publisher: CRC Press
ISBN: 0203483936
Category : Mathematics
Languages : en
Pages : 1216
Book Description
Researchers in the engineering industry and academia are making important advances on reliability-based design and modeling of uncertainty when data is limited. Non deterministic approaches have enabled industries to save billions by reducing design and warranty costs and by improving quality. Considering the lack of comprehensive and defini
Publisher: CRC Press
ISBN: 0203483936
Category : Mathematics
Languages : en
Pages : 1216
Book Description
Researchers in the engineering industry and academia are making important advances on reliability-based design and modeling of uncertainty when data is limited. Non deterministic approaches have enabled industries to save billions by reducing design and warranty costs and by improving quality. Considering the lack of comprehensive and defini
Reliability-based Structural Design
Author: Seung-Kyum Choi
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Publisher: Springer Science & Business Media
ISBN: 1846284457
Category : Technology & Engineering
Languages : en
Pages : 309
Book Description
This book provides readers with an understanding of the fundamentals and applications of structural reliability, stochastic finite element method, reliability analysis via stochastic expansion, and optimization under uncertainty. It examines the use of stochastic expansions, including polynomial chaos expansion and Karhunen-Loeve expansion for the reliability analysis of practical engineering problems.
Dynamic Analysis of Offshore Structures
Author: C.A. Brebbia
Publisher: Newnes
ISBN: 1483163288
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Dynamic Analysis of Offshore Structures appraises offshore structures, particularly the major sources of uncertainty in the design process. The book explains the fundamentals of probabilistic processes, the theory or analysis of sea states, and the random-vibration approach to structural response. The text describes the hydrodynamics of water waves, wave forecasting, and the statistical parameters associated with sea-states. The investigator can use Morison's equation to calculate the impact of wave forces acting on slender members such as on lattice-type structures. Or he can employ the diffraction theory to calculate wave forces acting on large-diameter bodies such as concrete gravity-type structures. Other environmental forces he should be concerned with are the effects of currents and winds. The book examines the theory of vibration (including the spectral approach), the theory of vibration on multi-degree-of-freedom structures, matrix analysis of structural response, problems of fatigue, and soil-structure interaction. The book notes the importance of the method of analysis used, with emphasis on the following: dynamic analysis, frequency domain, and linearization of drag. Two types of analysis follow linearization of drag: deterministic analysis (applied in a series of design waves which uses the long-term exceedance diagram for fatigue); or probabilistic analysis (used to study the behavior of the structure during the extreme design storm and its long term behavior for a range of sea states). The book can prove useful for structural, civil, or maritime engineers, as well as for students in one-year courses in offshore structure analysis at the postgraduate or final-year undergraduate level.
Publisher: Newnes
ISBN: 1483163288
Category : Technology & Engineering
Languages : en
Pages : 335
Book Description
Dynamic Analysis of Offshore Structures appraises offshore structures, particularly the major sources of uncertainty in the design process. The book explains the fundamentals of probabilistic processes, the theory or analysis of sea states, and the random-vibration approach to structural response. The text describes the hydrodynamics of water waves, wave forecasting, and the statistical parameters associated with sea-states. The investigator can use Morison's equation to calculate the impact of wave forces acting on slender members such as on lattice-type structures. Or he can employ the diffraction theory to calculate wave forces acting on large-diameter bodies such as concrete gravity-type structures. Other environmental forces he should be concerned with are the effects of currents and winds. The book examines the theory of vibration (including the spectral approach), the theory of vibration on multi-degree-of-freedom structures, matrix analysis of structural response, problems of fatigue, and soil-structure interaction. The book notes the importance of the method of analysis used, with emphasis on the following: dynamic analysis, frequency domain, and linearization of drag. Two types of analysis follow linearization of drag: deterministic analysis (applied in a series of design waves which uses the long-term exceedance diagram for fatigue); or probabilistic analysis (used to study the behavior of the structure during the extreme design storm and its long term behavior for a range of sea states). The book can prove useful for structural, civil, or maritime engineers, as well as for students in one-year courses in offshore structure analysis at the postgraduate or final-year undergraduate level.
Probabilistic Finite Element Model Updating Using Bayesian Statistics
Author: Tshilidzi Marwala
Publisher: John Wiley & Sons
ISBN: 111915300X
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 111915300X
Category : Technology & Engineering
Languages : en
Pages : 248
Book Description
Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.
Computational Analysis of Randomness in Structural Mechanics
Author: Christian Bucher
Publisher: CRC Press
ISBN: 0203876539
Category : Mathematics
Languages : en
Pages : 252
Book Description
Proper treatment of structural behavior under severe loading - such as the performance of a high-rise building during an earthquake - relies heavily on the use of probability-based analysis and decision-making tools. Proper application of these tools is significantly enhanced by a thorough understanding of the underlying theoretical and computation
Publisher: CRC Press
ISBN: 0203876539
Category : Mathematics
Languages : en
Pages : 252
Book Description
Proper treatment of structural behavior under severe loading - such as the performance of a high-rise building during an earthquake - relies heavily on the use of probability-based analysis and decision-making tools. Proper application of these tools is significantly enhanced by a thorough understanding of the underlying theoretical and computation
Reliability-Based Analysis and Design of Structures and Infrastructure
Author: Ehsan Noroozinejad Farsangi
Publisher: CRC Press
ISBN: 1000418065
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.
Publisher: CRC Press
ISBN: 1000418065
Category : Technology & Engineering
Languages : en
Pages : 522
Book Description
Increasing demand on improving the resiliency of modern structures and infrastructure requires ever more critical and complex designs. Therefore, the need for accurate and efficient approaches to assess uncertainties in loads, geometry, material properties, manufacturing processes, and operational environments has increased significantly. Reliability-based techniques help develop more accurate initial guidance for robust design and help to identify the sources of significant uncertainty in structural systems. Reliability-Based Analysis and Design of Structures and Infrastructure presents an overview of the methods of classical reliability analysis and design most associated with structural reliability. It also introduces more modern methods and advancements, and emphasizes the most useful methods and techniques used in reliability and risk studies, while elaborating their practical applications and limitations rather than detailed derivations. Features: Provides a practical and comprehensive overview of reliability and risk analysis and design techniques. Introduces resilient and smart structures/infrastructure that will lead to more reliable and sustainable societies. Considers loss elimination, risk management and life-cycle asset management as related to infrastructure projects. Introduces probability theory, statistical methods, and reliability analysis methods. Reliability-Based Analysis and Design of Structures and Infrastructure is suitable for researchers and practicing engineers, as well as upper-level students taking related courses in structural reliability analysis and design.