Author: Ephraim Suhir
Publisher: Springer Science & Business Media
ISBN: 9401165351
Category : Science
Languages : en
Pages : 429
Book Description
This book contains the fundamentals of a discipline, which could be called Structural Analysis in Microelectronics and Fiber Optics. It deals with mechanical behavior of microelectronic and fiber-optic systems and is written in response to the crucial need for a textbook for a first in-depth course on mechanical problems in microelectronics and fiber optics. The emphasis of this book is on electronic and optical packaging problems, and analytical modeling. This book is apparently the first attempt to select, advance, and present those methods of classical structural mechanics which have been or can be applied in various stress-strain problems encountered in "high technology" engineering and some related areas, such as materials science and solid-state physics. The following major objectives are pursued in Structural Analysis in Microelectronic and Fiber-Optic Systems: Identify structural elements typical for microelectronic and fiber-optic systems and devices, and introduce the student to the basic concepts of the mechanical behavior of microelectronic and fiber-optic struc tures, subjected to thermally induced or external loading. Select, advance, and present methods for analyzing stresses and deflections developed in microelectronic and fiber-optic structures; demonstrate the effectiveness of the methods and approaches of the classical struc tural analysis in the diverse mechanical problems of microelectronics and fiber optics; and give students of engineering, as well as practicing engineers and designers, a thorough understanding of the main princi ples involved in the analytical evaluation of the mechanical behavior of microelectronic and fiber-optic systems.
Structural Analysis in Microelectronic and Fiber-Optic Systems
Author: Ephraim Suhir
Publisher: Springer Science & Business Media
ISBN: 9401165351
Category : Science
Languages : en
Pages : 429
Book Description
This book contains the fundamentals of a discipline, which could be called Structural Analysis in Microelectronics and Fiber Optics. It deals with mechanical behavior of microelectronic and fiber-optic systems and is written in response to the crucial need for a textbook for a first in-depth course on mechanical problems in microelectronics and fiber optics. The emphasis of this book is on electronic and optical packaging problems, and analytical modeling. This book is apparently the first attempt to select, advance, and present those methods of classical structural mechanics which have been or can be applied in various stress-strain problems encountered in "high technology" engineering and some related areas, such as materials science and solid-state physics. The following major objectives are pursued in Structural Analysis in Microelectronic and Fiber-Optic Systems: Identify structural elements typical for microelectronic and fiber-optic systems and devices, and introduce the student to the basic concepts of the mechanical behavior of microelectronic and fiber-optic struc tures, subjected to thermally induced or external loading. Select, advance, and present methods for analyzing stresses and deflections developed in microelectronic and fiber-optic structures; demonstrate the effectiveness of the methods and approaches of the classical struc tural analysis in the diverse mechanical problems of microelectronics and fiber optics; and give students of engineering, as well as practicing engineers and designers, a thorough understanding of the main princi ples involved in the analytical evaluation of the mechanical behavior of microelectronic and fiber-optic systems.
Publisher: Springer Science & Business Media
ISBN: 9401165351
Category : Science
Languages : en
Pages : 429
Book Description
This book contains the fundamentals of a discipline, which could be called Structural Analysis in Microelectronics and Fiber Optics. It deals with mechanical behavior of microelectronic and fiber-optic systems and is written in response to the crucial need for a textbook for a first in-depth course on mechanical problems in microelectronics and fiber optics. The emphasis of this book is on electronic and optical packaging problems, and analytical modeling. This book is apparently the first attempt to select, advance, and present those methods of classical structural mechanics which have been or can be applied in various stress-strain problems encountered in "high technology" engineering and some related areas, such as materials science and solid-state physics. The following major objectives are pursued in Structural Analysis in Microelectronic and Fiber-Optic Systems: Identify structural elements typical for microelectronic and fiber-optic systems and devices, and introduce the student to the basic concepts of the mechanical behavior of microelectronic and fiber-optic struc tures, subjected to thermally induced or external loading. Select, advance, and present methods for analyzing stresses and deflections developed in microelectronic and fiber-optic structures; demonstrate the effectiveness of the methods and approaches of the classical struc tural analysis in the diverse mechanical problems of microelectronics and fiber optics; and give students of engineering, as well as practicing engineers and designers, a thorough understanding of the main princi ples involved in the analytical evaluation of the mechanical behavior of microelectronic and fiber-optic systems.
Structural Analysis in Microelectronics and Fiber Optic Systems
Author:
Publisher:
ISBN:
Category : Fiber optics
Languages : en
Pages : 294
Book Description
Publisher:
ISBN:
Category : Fiber optics
Languages : en
Pages : 294
Book Description
Structural Analysis in Microelectronic and Fiber-optic Systems
Author: Ephraim Suhir
Publisher:
ISBN:
Category : Fiber optics
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Fiber optics
Languages : en
Pages :
Book Description
Structural Analysis in Microelectronics and Fiber Optics, 1996
Author: Ephraim Suhir
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 236
Book Description
Proceedings of the November 1996 symposium. Contains 18 papers arranged in sections on structural reliability and dynamics, structural analysis of IC packages, solder alloys and joints, and fiber-optic and optoelectronic structures. Specific topics include singular solutions of interfacial stresses
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 236
Book Description
Proceedings of the November 1996 symposium. Contains 18 papers arranged in sections on structural reliability and dynamics, structural analysis of IC packages, solder alloys and joints, and fiber-optic and optoelectronic structures. Specific topics include singular solutions of interfacial stresses
Structural Analysis in Microelectronic and Fiber-Optic Systems
Author: Ephraim Suhir
Publisher: Springer
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 440
Book Description
This book contains the fundamentals of a discipline, which could be called Structural Analysis in Microelectronics and Fiber Optics. It deals with mechanical behavior of microelectronic and fiber-optic systems and is written in response to the crucial need for a textbook for a first in-depth course on mechanical problems in microelectronics and fiber optics. The emphasis of this book is on electronic and optical packaging problems, and analytical modeling. This book is apparently the first attempt to select, advance, and present those methods of classical structural mechanics which have been or can be applied in various stress-strain problems encountered in "high technology" engineering and some related areas, such as materials science and solid-state physics. The following major objectives are pursued in Structural Analysis in Microelectronic and Fiber-Optic Systems: Identify structural elements typical for microelectronic and fiber-optic systems and devices, and introduce the student to the basic concepts of the mechanical behavior of microelectronic and fiber-optic struc tures, subjected to thermally induced or external loading. Select, advance, and present methods for analyzing stresses and deflections developed in microelectronic and fiber-optic structures; demonstrate the effectiveness of the methods and approaches of the classical struc tural analysis in the diverse mechanical problems of microelectronics and fiber optics; and give students of engineering, as well as practicing engineers and designers, a thorough understanding of the main princi ples involved in the analytical evaluation of the mechanical behavior of microelectronic and fiber-optic systems.
Publisher: Springer
ISBN:
Category : Juvenile Nonfiction
Languages : en
Pages : 440
Book Description
This book contains the fundamentals of a discipline, which could be called Structural Analysis in Microelectronics and Fiber Optics. It deals with mechanical behavior of microelectronic and fiber-optic systems and is written in response to the crucial need for a textbook for a first in-depth course on mechanical problems in microelectronics and fiber optics. The emphasis of this book is on electronic and optical packaging problems, and analytical modeling. This book is apparently the first attempt to select, advance, and present those methods of classical structural mechanics which have been or can be applied in various stress-strain problems encountered in "high technology" engineering and some related areas, such as materials science and solid-state physics. The following major objectives are pursued in Structural Analysis in Microelectronic and Fiber-Optic Systems: Identify structural elements typical for microelectronic and fiber-optic systems and devices, and introduce the student to the basic concepts of the mechanical behavior of microelectronic and fiber-optic struc tures, subjected to thermally induced or external loading. Select, advance, and present methods for analyzing stresses and deflections developed in microelectronic and fiber-optic structures; demonstrate the effectiveness of the methods and approaches of the classical struc tural analysis in the diverse mechanical problems of microelectronics and fiber optics; and give students of engineering, as well as practicing engineers and designers, a thorough understanding of the main princi ples involved in the analytical evaluation of the mechanical behavior of microelectronic and fiber-optic systems.
Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging
Author: Ephraim Suhir
Publisher: Springer Science & Business Media
ISBN: 0387329897
Category : Technology & Engineering
Languages : en
Pages : 1471
Book Description
This handbook provides the most comprehensive, up-to-date and easy-to-apply information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials. It details their assemblies, structures and systems, and each chapter contains a summary of the state-of-the-art in a particular field. The book provides practical recommendations on how to apply current knowledge and technology to design and manufacture. It further describes how to operate a viable, reliable and cost-effective electronic component or photonic device, and how to make such a device into a successful commercial product.
Publisher: Springer Science & Business Media
ISBN: 0387329897
Category : Technology & Engineering
Languages : en
Pages : 1471
Book Description
This handbook provides the most comprehensive, up-to-date and easy-to-apply information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials. It details their assemblies, structures and systems, and each chapter contains a summary of the state-of-the-art in a particular field. The book provides practical recommendations on how to apply current knowledge and technology to design and manufacture. It further describes how to operate a viable, reliable and cost-effective electronic component or photonic device, and how to make such a device into a successful commercial product.
Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices
Author: Ephraim Suhir
Publisher: CRC Press
ISBN: 0429863829
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices addresses analytical (mathematical) modeling approaches aimed at understanding the underlying physics and mechanics of the behavior and performance of solder materials and solder joint interconnections of IC devices. The emphasis is on design for reliability, including probabilistic predictions of the solder lifetime. Describes how to use the developed methods of analytical predictive modeling to minimize thermal stresses and strains in solder joint of IC devices Shows how to build the preprocessing models in finite-element analyses (FEA) by comparing the FEA and analytical data Covers how to design the most effective test vehicles for testing solder joints Details how to design and organize, in addition to or sometimes even instead of highly accelerated life tests (HALT), highly focused and highly cost-effective failure oriented accelerated testing (FOAT) to understand the physic of failure of solder joint interconnections Outlines how to convert the low cycle fatigue conditions into elastic fatigue conditions and to assess the fatigue lifetime in such cases Illustrates ways to replace time- and labor-consuming, expensive, and possibly misleading temperature cycling tests with simpler and physically meaningful accelerated tests This book is aimed towards professionals in electronic and photonic packaging, electronic and optical materials, materials engineering, and mechanical design.
Publisher: CRC Press
ISBN: 0429863829
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Avoiding Inelastic Strains in Solder Joint Interconnections of IC Devices addresses analytical (mathematical) modeling approaches aimed at understanding the underlying physics and mechanics of the behavior and performance of solder materials and solder joint interconnections of IC devices. The emphasis is on design for reliability, including probabilistic predictions of the solder lifetime. Describes how to use the developed methods of analytical predictive modeling to minimize thermal stresses and strains in solder joint of IC devices Shows how to build the preprocessing models in finite-element analyses (FEA) by comparing the FEA and analytical data Covers how to design the most effective test vehicles for testing solder joints Details how to design and organize, in addition to or sometimes even instead of highly accelerated life tests (HALT), highly focused and highly cost-effective failure oriented accelerated testing (FOAT) to understand the physic of failure of solder joint interconnections Outlines how to convert the low cycle fatigue conditions into elastic fatigue conditions and to assess the fatigue lifetime in such cases Illustrates ways to replace time- and labor-consuming, expensive, and possibly misleading temperature cycling tests with simpler and physically meaningful accelerated tests This book is aimed towards professionals in electronic and photonic packaging, electronic and optical materials, materials engineering, and mechanical design.
Thermal Stress and Strain in Microelectronics Packaging
Author: John Lau
Publisher: Springer Science & Business Media
ISBN: 1468477676
Category : Technology & Engineering
Languages : en
Pages : 904
Book Description
Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.
Publisher: Springer Science & Business Media
ISBN: 1468477676
Category : Technology & Engineering
Languages : en
Pages : 904
Book Description
Microelectronics packaging and interconnection have experienced exciting growth stimulated by the recognition that systems, not just silicon, provide the solution to evolving applications. In order to have a high density/ performance/yield/quality/reliability, low cost, and light weight system, a more precise understanding of the system behavior is required. Mechanical and thermal phenomena are among the least understood and most complex of the many phenomena encountered in microelectronics packaging systems and are found on the critical path of neatly every design and process in the electronics industry. The last decade has witnessed an explosive growth in the research and development efforts devoted to determining the mechanical and thermal behaviors of microelectronics packaging. With the advance of very large scale integration technologies, thousands to tens of thousands of devices can be fabricated on a silicon chip. At the same time, demands to further reduce packaging signal delay and increase packaging density between communicat ing circuits have led to the use of very high power dissipation single-chip modules and multi-chip modules. The result of these developments has been a rapid growth in module level heat flux within the personal, workstation, midrange, mainframe, and super computers. Thus, thermal (temperature, stress, and strain) management is vital for microelectronics packaging designs and analyses. How to determine the temperature distribution in the elec tronics components and systems is outside the scope of this book, which focuses on the determination of stress and strain distributions in the electronics packaging.
Conference Proceedings
Author: Society of Plastics Engineers. Technical Conference
Publisher:
ISBN:
Category : Plastics
Languages : en
Pages : 1120
Book Description
Publisher:
ISBN:
Category : Plastics
Languages : en
Pages : 1120
Book Description
Applied Materials Science
Author: Deborah D. L. Chung
Publisher: CRC Press
ISBN: 1420040979
Category : Science
Languages : en
Pages : 253
Book Description
Materials are the foundation of technology. As such, most universities provide engineering undergraduates with the fundamental concepts of materials science, including crystal structures, imperfections, phase diagrams, materials processing, and materials properties. Few, however, offer the practical, applications-oriented background that their stud
Publisher: CRC Press
ISBN: 1420040979
Category : Science
Languages : en
Pages : 253
Book Description
Materials are the foundation of technology. As such, most universities provide engineering undergraduates with the fundamental concepts of materials science, including crystal structures, imperfections, phase diagrams, materials processing, and materials properties. Few, however, offer the practical, applications-oriented background that their stud