Author: Dung Le
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608766
Category : Mathematics
Languages : en
Pages : 198
Book Description
Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo–Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)–H1(μ)| Some algebraic inequalities Partial regularity
Strongly Coupled Parabolic and Elliptic Systems
Author: Dung Le
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608766
Category : Mathematics
Languages : en
Pages : 198
Book Description
Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo–Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)–H1(μ)| Some algebraic inequalities Partial regularity
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110608766
Category : Mathematics
Languages : en
Pages : 198
Book Description
Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo–Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)–H1(μ)| Some algebraic inequalities Partial regularity
Strongly Coupled Parabolic and Elliptic Systems
Author: Dung Le
Publisher: ISSN
ISBN: 9783110607154
Category : Mathematics
Languages : en
Pages : 0
Book Description
Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo-Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)-H1(μ) Some algebraic inequalities Partial regularity
Publisher: ISSN
ISBN: 9783110607154
Category : Mathematics
Languages : en
Pages : 0
Book Description
Strongly coupled (or cross-diffusion) systems of parabolic and elliptic partial differential equations appear in many physical applications. This book presents a new approach to the solvability of general strongly coupled systems, a much more difficult problem in contrast to the scalar case, by unifying, elucidating and extending breakthrough results obtained by the author, and providing solutions to many open fundamental questions in the theory. Several examples in mathematical biology and ecology are also included. Contents Interpolation Gagliardo-Nirenberg inequalities The parabolic systems The elliptic systems Cross-diffusion systems of porous media type Nontrivial steady-state solutions The duality RBMO(μ)-H1(μ) Some algebraic inequalities Partial regularity
Cross Diffusion Systems
Author: Dung Le
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110795132
Category : Mathematics
Languages : en
Pages : 236
Book Description
The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110795132
Category : Mathematics
Languages : en
Pages : 236
Book Description
The introduction of cross diffusivity opens many questions in the theory of reactiondiffusion systems. This book will be the first to investigate such problems presenting new findings for researchers interested in studying parabolic and elliptic systems where classical methods are not applicable. In addition, The Gagliardo-Nirenberg inequality involving BMO norms is improved and new techniques are covered that will be of interest. This book also provides many open problems suitable for interested Ph.D students.
Handbook of Differential Equations: Stationary Partial Differential Equations
Author: Michel Chipot
Publisher: Elsevier
ISBN: 0080560598
Category : Mathematics
Languages : en
Pages : 618
Book Description
This handbook is the sixth and last volume in the series devoted to stationary partial differential equations. The topics covered by this volume include in particular domain perturbations for boundary value problems, singular solutions of semilinear elliptic problems, positive solutions to elliptic equations on unbounded domains, symmetry of solutions, stationary compressible Navier-Stokes equation, Lotka-Volterra systems with cross-diffusion, and fixed point theory for elliptic boundary value problems.* Collection of self-contained, state-of-the-art surveys* Written by well-known experts in the field* Informs and updates on all the latest developments
Publisher: Elsevier
ISBN: 0080560598
Category : Mathematics
Languages : en
Pages : 618
Book Description
This handbook is the sixth and last volume in the series devoted to stationary partial differential equations. The topics covered by this volume include in particular domain perturbations for boundary value problems, singular solutions of semilinear elliptic problems, positive solutions to elliptic equations on unbounded domains, symmetry of solutions, stationary compressible Navier-Stokes equation, Lotka-Volterra systems with cross-diffusion, and fixed point theory for elliptic boundary value problems.* Collection of self-contained, state-of-the-art surveys* Written by well-known experts in the field* Informs and updates on all the latest developments
Maximum Principles and Sharp Constants for Solutions of Elliptic and Parabolic Systems
Author: Gershon Kresin
Publisher: American Mathematical Soc.
ISBN: 0821889818
Category : Mathematics
Languages : en
Pages : 330
Book Description
The main goal of this book is to present results pertaining to various versions of the maximum principle for elliptic and parabolic systems of arbitrary order. In particular, the authors present necessary and sufficient conditions for validity of the classical maximum modulus principles for systems of second order and obtain sharp constants in inequalities of Miranda-Agmon type and in many other inequalities of a similar nature. Somewhat related to this topic are explicit formulas for the norms and the essential norms of boundary integral operators. The proofs are based on a unified approach using, on one hand, representations of the norms of matrix-valued integral operators whose target spaces are linear and finite dimensional, and, on the other hand, on solving certain finite dimensional optimization problems. This book reflects results obtained by the authors, and can be useful to research mathematicians and graduate students interested in partial differential equations.
Publisher: American Mathematical Soc.
ISBN: 0821889818
Category : Mathematics
Languages : en
Pages : 330
Book Description
The main goal of this book is to present results pertaining to various versions of the maximum principle for elliptic and parabolic systems of arbitrary order. In particular, the authors present necessary and sufficient conditions for validity of the classical maximum modulus principles for systems of second order and obtain sharp constants in inequalities of Miranda-Agmon type and in many other inequalities of a similar nature. Somewhat related to this topic are explicit formulas for the norms and the essential norms of boundary integral operators. The proofs are based on a unified approach using, on one hand, representations of the norms of matrix-valued integral operators whose target spaces are linear and finite dimensional, and, on the other hand, on solving certain finite dimensional optimization problems. This book reflects results obtained by the authors, and can be useful to research mathematicians and graduate students interested in partial differential equations.
Introduction to Reaction-Diffusion Equations
Author: King-Yeung Lam
Publisher: Springer Nature
ISBN: 3031204220
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.
Publisher: Springer Nature
ISBN: 3031204220
Category : Mathematics
Languages : en
Pages : 316
Book Description
This book introduces some basic mathematical tools in reaction-diffusion models, with applications to spatial ecology and evolutionary biology. It is divided into four parts. The first part is an introduction to the maximum principle, the theory of principal eigenvalues for elliptic and periodic-parabolic equations and systems, and the theory of principal Floquet bundles. The second part concerns the applications in spatial ecology. We discuss the dynamics of a single species and two competing species, as well as some recent progress on N competing species in bounded domains. Some related results on stream populations and phytoplankton populations are also included. We also discuss the spreading properties of a single species in an unbounded spatial domain, as modeled by the Fisher-KPP equation. The third part concerns the applications in evolutionary biology. We describe the basic notions of adaptive dynamics, such as evolutionarily stable strategies and evolutionary branching points, in the context of a competition model of stream populations. We also discuss a class of selection-mutation models describing a population structured along a continuous phenotypical trait. The fourth part consists of several appendices, which present a self-contained treatment of some basic abstract theories in functional analysis and dynamical systems. Topics include the Krein-Rutman theorem for linear and nonlinear operators, as well as some elements of monotone dynamical systems and abstract competition systems. Most of the book is self-contained and it is aimed at graduate students and researchers who are interested in the theory and applications of reaction-diffusion equations.
Almost Periodic and Almost Automorphic Solutions to Integro-Differential Equations
Author: Marko Kostić
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110641259
Category : Mathematics
Languages : en
Pages : 508
Book Description
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110641259
Category : Mathematics
Languages : en
Pages : 508
Book Description
This book discusses almost periodic and almost automorphic solutions to abstract integro-differential Volterra equations that are degenerate in time, and in particular equations whose solutions are governed by (degenerate) solution operator families with removable singularities at zero. It particularly covers abstract fractional equations and inclusions with multivalued linear operators as well as abstract fractional semilinear Cauchy problems.
Complex Analysis and Dynamical Systems VI
Author: Matania Ben-Artzi
Publisher: American Mathematical Soc.
ISBN: 1470416530
Category : Mathematics
Languages : en
Pages : 352
Book Description
This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19-24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers in this volume range over a wide variety of topics in Partial Differential Equations, Differential Geometry, and the Radon Transform. Taken together, the articles collected here provide the reader with a panorama of activity in partial differential equations and general relativity, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 667) is devoted to complex analysis, quasiconformal mappings, and complex dynamics. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).
Publisher: American Mathematical Soc.
ISBN: 1470416530
Category : Mathematics
Languages : en
Pages : 352
Book Description
This volume contains the proceedings of the Sixth International Conference on Complex Analysis and Dynamical Systems, held from May 19-24, 2013, in Nahariya, Israel, in honor of David Shoikhet's sixtieth birthday. The papers in this volume range over a wide variety of topics in Partial Differential Equations, Differential Geometry, and the Radon Transform. Taken together, the articles collected here provide the reader with a panorama of activity in partial differential equations and general relativity, drawn by a number of leading figures in the field. They testify to the continued vitality of the interplay between classical and modern analysis. The companion volume (Contemporary Mathematics, Volume 667) is devoted to complex analysis, quasiconformal mappings, and complex dynamics. This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).
Mathematical Neuroscience
Author: Stanislaw Brzychczy
Publisher: Academic Press
ISBN: 0124104827
Category : Mathematics
Languages : en
Pages : 201
Book Description
Mathematical Neuroscience is a book for mathematical biologists seeking to discover the complexities of brain dynamics in an integrative way. It is the first research monograph devoted exclusively to the theory and methods of nonlinear analysis of infinite systems based on functional analysis techniques arising in modern mathematics. Neural models that describe the spatio-temporal evolution of coarse-grained variables—such as synaptic or firing rate activity in populations of neurons —and often take the form of integro-differential equations would not normally reflect an integrative approach. This book examines the solvability of infinite systems of reaction diffusion type equations in partially ordered abstract spaces. It considers various methods and techniques of nonlinear analysis, including comparison theorems, monotone iterative techniques, a truncation method, and topological fixed point methods. Infinite systems of such equations play a crucial role in the integrative aspects of neuroscience modeling. - The first focused introduction to the use of nonlinear analysis with an infinite dimensional approach to theoretical neuroscience - Combines functional analysis techniques with nonlinear dynamical systems applied to the study of the brain - Introduces powerful mathematical techniques to manage the dynamics and challenges of infinite systems of equations applied to neuroscience modeling
Publisher: Academic Press
ISBN: 0124104827
Category : Mathematics
Languages : en
Pages : 201
Book Description
Mathematical Neuroscience is a book for mathematical biologists seeking to discover the complexities of brain dynamics in an integrative way. It is the first research monograph devoted exclusively to the theory and methods of nonlinear analysis of infinite systems based on functional analysis techniques arising in modern mathematics. Neural models that describe the spatio-temporal evolution of coarse-grained variables—such as synaptic or firing rate activity in populations of neurons —and often take the form of integro-differential equations would not normally reflect an integrative approach. This book examines the solvability of infinite systems of reaction diffusion type equations in partially ordered abstract spaces. It considers various methods and techniques of nonlinear analysis, including comparison theorems, monotone iterative techniques, a truncation method, and topological fixed point methods. Infinite systems of such equations play a crucial role in the integrative aspects of neuroscience modeling. - The first focused introduction to the use of nonlinear analysis with an infinite dimensional approach to theoretical neuroscience - Combines functional analysis techniques with nonlinear dynamical systems applied to the study of the brain - Introduces powerful mathematical techniques to manage the dynamics and challenges of infinite systems of equations applied to neuroscience modeling
Reaction Diffusion Systems
Author: Gabriela Caristi
Publisher: CRC Press
ISBN: 1000117197
Category : Mathematics
Languages : en
Pages : 428
Book Description
"Based on the proceedings of the International Conference on Reaction Diffusion Systems held recently at the University of Trieste, Italy. Presents new research papers and state-of-the-art surveys on the theory of elliptic, parabolic, and hyperbolic problems, and their related applications. Furnishes incisive contribution by over 40 mathematicians representing renowned institutions in North and South America, Europe, and the Middle East."
Publisher: CRC Press
ISBN: 1000117197
Category : Mathematics
Languages : en
Pages : 428
Book Description
"Based on the proceedings of the International Conference on Reaction Diffusion Systems held recently at the University of Trieste, Italy. Presents new research papers and state-of-the-art surveys on the theory of elliptic, parabolic, and hyperbolic problems, and their related applications. Furnishes incisive contribution by over 40 mathematicians representing renowned institutions in North and South America, Europe, and the Middle East."