Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 20
Book Description
This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections mesured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface.
Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/A-18 Aircraft
Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 20
Book Description
This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections mesured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface.
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 20
Book Description
This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections mesured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface.
Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/a-18 Aircraft
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721510016
Category :
Languages : en
Pages : 32
Book Description
This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections measured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface. A series of 72 load cases has been performed, including single-point, double-point, and distributed load cases. Applied loads have reached 70 percent of the flight limit load. Maximum wingtip deflection has reached nearly 16 in. Lokos, William A. and Olney, Candida D. and Chen, Tony and Crawford, Natalie D. and Stauf, Rick and Reichenbach, Eric Y. and Bessette, Denis (Technical Monitor) Armstrong Flight Research Center NASA/TM-2002-210726, NAS 1.15:210726, H-2490
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721510016
Category :
Languages : en
Pages : 32
Book Description
This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections measured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface. A series of 72 load cases has been performed, including single-point, double-point, and distributed load cases. Applied loads have reached 70 percent of the flight limit load. Maximum wingtip deflection has reached nearly 16 in. Lokos, William A. and Olney, Candida D. and Chen, Tony and Crawford, Natalie D. and Stauf, Rick and Reichenbach, Eric Y. and Bessette, Denis (Technical Monitor) Armstrong Flight Research Center NASA/TM-2002-210726, NAS 1.15:210726, H-2490
Modeling Aircraft Wing Loads from Flight Data Using Neural Networks
Author: Michael J. Allen
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 22
Book Description
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 22
Book Description
The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018)
Author: Xinguo Zhang
Publisher: Springer
ISBN: 981133305X
Category : Technology & Engineering
Languages : en
Pages : 3091
Book Description
This book is a compilation of peer-reviewed papers from the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). The symposium is a common endeavour between the four national aerospace societies in China, Australia, Korea and Japan, namely, the Chinese Society of Aeronautics and Astronautics (CSAA), Royal Aeronautical Society Australian Division (RAeS Australian Division), the Korean Society for Aeronautical and Space Sciences (KSAS) and the Japan Society for Aeronautical and Space Sciences (JSASS). APISAT is an annual event initiated in 2009 to provide an opportunity for researchers and engineers from Asia-Pacific countries to discuss current and future advanced topics in aeronautical and space engineering.
Publisher: Springer
ISBN: 981133305X
Category : Technology & Engineering
Languages : en
Pages : 3091
Book Description
This book is a compilation of peer-reviewed papers from the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). The symposium is a common endeavour between the four national aerospace societies in China, Australia, Korea and Japan, namely, the Chinese Society of Aeronautics and Astronautics (CSAA), Royal Aeronautical Society Australian Division (RAeS Australian Division), the Korean Society for Aeronautical and Space Sciences (KSAS) and the Japan Society for Aeronautical and Space Sciences (JSASS). APISAT is an annual event initiated in 2009 to provide an opportunity for researchers and engineers from Asia-Pacific countries to discuss current and future advanced topics in aeronautical and space engineering.
Aerospace America
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 724
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 724
Book Description
Deflection-Based Structural Loads Estimation from the Active Aeroelastic Wing F/A-18 Aircraft
Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781723718212
Category : Science
Languages : en
Pages : 28
Book Description
Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.Lizotte, Andrew M. and Lokos, William A.Armstrong Flight Research CenterAEROELASTICITY; DEFLECTION; WINGS; F-18 AIRCRAFT; AERODYNAMIC LOADS; BENDING MOMENTS; FEASIBILITY ANALYSIS; STRAIN GAGES; CIRCUITS; POTENTIOMETERS (INSTRUMENTS); WING ROOTS; ROOT-MEAN-SQUARE ERRORS; GROUND TESTS
Publisher: Independently Published
ISBN: 9781723718212
Category : Science
Languages : en
Pages : 28
Book Description
Traditional techniques in structural load measurement entail the correlation of a known load with strain-gage output from the individual components of a structure or machine. The use of strain gages has proved successful and is considered the standard approach for load measurement. However, remotely measuring aerodynamic loads using deflection measurement systems to determine aeroelastic deformation as a substitute to strain gages may yield lower testing costs while improving aircraft performance through reduced instrumentation weight. This technique was examined using a reliable strain and structural deformation measurement system. The objective of this study was to explore the utility of a deflection-based load estimation, using the active aeroelastic wing F/A-18 aircraft. Calibration data from ground tests performed on the aircraft were used to derive left wing-root and wing-fold bending-moment and torque load equations based on strain gages, however, for this study, point deflections were used to derive deflection-based load equations. Comparisons between the strain-gage and deflection-based methods are presented. Flight data from the phase-1 active aeroelastic wing flight program were used to validate the deflection-based load estimation method. Flight validation revealed a strong bending-moment correlation and slightly weaker torque correlation. Development of current techniques, and future studies are discussed.Lizotte, Andrew M. and Lokos, William A.Armstrong Flight Research CenterAEROELASTICITY; DEFLECTION; WINGS; F-18 AIRCRAFT; AERODYNAMIC LOADS; BENDING MOMENTS; FEASIBILITY ANALYSIS; STRAIN GAGES; CIRCUITS; POTENTIOMETERS (INSTRUMENTS); WING ROOTS; ROOT-MEAN-SQUARE ERRORS; GROUND TESTS
NASA SP.
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 232
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 232
Book Description
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 960
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 960
Book Description
Aeronautical Engineering
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 648
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 648
Book Description
A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in Scientific and technical aerospace reports (STAR) and International aerospace abstracts (IAA).
Health Monitoring of Aerospace Structures
Author: Wieslaw Staszewski
Publisher: John Wiley & Sons
ISBN: 9780470843406
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
Providing quality research for the reader, this title encompasses all the recent developments in smart sensor technology for health monitoring in aerospace structures, providing a valuable introduction to damage detection techniques. Focussing on engineering applications, all chapters are written by smart structures and materials experts from aerospace manufacturers and research/academic institutions. This key reference: Discusses the most important aspects related to smart technologies for damage detection; this includes not only monitoring techniques but also aspects related to specifications, design parameters, assessment and qualification routes. Presents real case studies and applications; this includes in-flight tests; the work presented goes far beyond academic research applications. Displays a balance between theoretical developments and engineering applications
Publisher: John Wiley & Sons
ISBN: 9780470843406
Category : Technology & Engineering
Languages : en
Pages : 290
Book Description
Providing quality research for the reader, this title encompasses all the recent developments in smart sensor technology for health monitoring in aerospace structures, providing a valuable introduction to damage detection techniques. Focussing on engineering applications, all chapters are written by smart structures and materials experts from aerospace manufacturers and research/academic institutions. This key reference: Discusses the most important aspects related to smart technologies for damage detection; this includes not only monitoring techniques but also aspects related to specifications, design parameters, assessment and qualification routes. Presents real case studies and applications; this includes in-flight tests; the work presented goes far beyond academic research applications. Displays a balance between theoretical developments and engineering applications