Stochastic Stability of Differential Equations in Abstract Spaces

Stochastic Stability of Differential Equations in Abstract Spaces PDF Author: Kai Liu
Publisher: Cambridge University Press
ISBN: 1108705170
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
Presents a unified treatment of stochastic differential equations in abstract, mainly Hilbert, spaces.

Stochastic Stability of Differential Equations in Abstract Spaces

Stochastic Stability of Differential Equations in Abstract Spaces PDF Author: Kai Liu
Publisher: Cambridge University Press
ISBN: 1108705170
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
Presents a unified treatment of stochastic differential equations in abstract, mainly Hilbert, spaces.

Stability of Infinite Dimensional Stochastic Differential Equations with Applications

Stability of Infinite Dimensional Stochastic Differential Equations with Applications PDF Author: Kai Liu
Publisher: CRC Press
ISBN: 1420034820
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
Stochastic differential equations in infinite dimensional spaces are motivated by the theory and analysis of stochastic processes and by applications such as stochastic control, population biology, and turbulence, where the analysis and control of such systems involves investigating their stability. While the theory of such equations is well establ

Stochastic Stability of Differential Equations in Abstract Spaces

Stochastic Stability of Differential Equations in Abstract Spaces PDF Author: Kai Liu
Publisher: Cambridge University Press
ISBN: 1108626491
Category : Mathematics
Languages : en
Pages : 277

Get Book Here

Book Description
The stability of stochastic differential equations in abstract, mainly Hilbert, spaces receives a unified treatment in this self-contained book. It covers basic theory as well as computational techniques for handling the stochastic stability of systems from mathematical, physical and biological problems. Its core material is divided into three parts devoted respectively to the stochastic stability of linear systems, non-linear systems, and time-delay systems. The focus is on stability of stochastic dynamical processes affected by white noise, which are described by partial differential equations such as the Navier–Stokes equations. A range of mathematicians and scientists, including those involved in numerical computation, will find this book useful. It is also ideal for engineers working on stochastic systems and their control, and researchers in mathematical physics or biology.

Applied Stochastic Differential Equations

Applied Stochastic Differential Equations PDF Author: Simo Särkkä
Publisher: Cambridge University Press
ISBN: 1316510085
Category : Business & Economics
Languages : en
Pages : 327

Get Book Here

Book Description
With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

Random Differential Inequalities

Random Differential Inequalities PDF Author: Lakshmikantham
Publisher: Academic Press
ISBN: 0080956580
Category : Computers
Languages : en
Pages : 225

Get Book Here

Book Description
Random Differential Inequalities

Stochastic Differential Equations with Markovian Switching

Stochastic Differential Equations with Markovian Switching PDF Author: Xuerong Mao
Publisher: Imperial College Press
ISBN: 1860947018
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
This textbook provides the first systematic presentation of the theory of stochastic differential equations with Markovian switching. It presents the basic principles at an introductory level but emphasizes current advanced level research trends. The material takes into account all the features of Ito equations, Markovian switching, interval systems and time-lag. The theory developed is applicable in different and complicated situations in many branches of science and industry.

Effective Results and Methods for Diophantine Equations over Finitely Generated Domains

Effective Results and Methods for Diophantine Equations over Finitely Generated Domains PDF Author: Jan-Hendrik Evertse
Publisher: Cambridge University Press
ISBN: 1009005855
Category : Mathematics
Languages : en
Pages : 241

Get Book Here

Book Description
Provides exceptional coverage of effective solutions for Diophantine equations over finitely generated domains.

Facets of Algebraic Geometry

Facets of Algebraic Geometry PDF Author: Paolo Aluffi
Publisher: Cambridge University Press
ISBN: 1108792502
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Written to honor the enduring influence of William Fulton, these articles present substantial contributions to algebraic geometry.

Facets of Algebraic Geometry: Volume 2

Facets of Algebraic Geometry: Volume 2 PDF Author: Paolo Aluffi
Publisher: Cambridge University Press
ISBN: 1108890547
Category : Mathematics
Languages : en
Pages : 396

Get Book Here

Book Description
Written to honor the 80th birthday of William Fulton, the articles collected in this volume (the second of a pair) present substantial contributions to algebraic geometry and related fields, with an emphasis on combinatorial algebraic geometry and intersection theory. Featured include commutative algebra, moduli spaces, quantum cohomology, representation theory, Schubert calculus, and toric and tropical geometry. The range of these contributions is a testament to the breadth and depth of Fulton's mathematical influence. The authors are all internationally recognized experts, and include well-established researchers as well as rising stars of a new generation of mathematicians. The text aims to stimulate progress and provide inspiration to graduate students and researchers in the field.

Equivariant Topology and Derived Algebra

Equivariant Topology and Derived Algebra PDF Author: Scott Balchin
Publisher: Cambridge University Press
ISBN: 1108931944
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
A collection of research papers, both new and expository, based on the interests of Professor J. P. C. Greenlees.