Author: Piero Barone
Publisher: Springer Science & Business Media
ISBN: 1461229200
Category : Mathematics
Languages : en
Pages : 266
Book Description
This volume comprises a collection of papers by world- renowned experts on image analysis. The papers range from survey articles to research papers, and from theoretical topics such as simulated annealing through to applied image reconstruction. It covers applications as diverse as biomedicine, astronomy, and geophysics. As a result, any researcher working on image analysis will find this book provides an up-to-date overview of the field and in addition, the extensive bibliographies will make this a useful reference.
Stochastic Models, Statistical Methods, and Algorithms in Image Analysis
Author: Piero Barone
Publisher: Springer Science & Business Media
ISBN: 1461229200
Category : Mathematics
Languages : en
Pages : 266
Book Description
This volume comprises a collection of papers by world- renowned experts on image analysis. The papers range from survey articles to research papers, and from theoretical topics such as simulated annealing through to applied image reconstruction. It covers applications as diverse as biomedicine, astronomy, and geophysics. As a result, any researcher working on image analysis will find this book provides an up-to-date overview of the field and in addition, the extensive bibliographies will make this a useful reference.
Publisher: Springer Science & Business Media
ISBN: 1461229200
Category : Mathematics
Languages : en
Pages : 266
Book Description
This volume comprises a collection of papers by world- renowned experts on image analysis. The papers range from survey articles to research papers, and from theoretical topics such as simulated annealing through to applied image reconstruction. It covers applications as diverse as biomedicine, astronomy, and geophysics. As a result, any researcher working on image analysis will find this book provides an up-to-date overview of the field and in addition, the extensive bibliographies will make this a useful reference.
Statistical Modelling
Author: Gilg U.H. Seeber
Publisher: Springer Science & Business Media
ISBN: 1461207894
Category : Mathematics
Languages : en
Pages : 328
Book Description
This volume presents the published proceedings of the lOth International Workshop on Statistical Modelling, to be held in Innsbruck, Austria from 10 to 14 July, 1995. This workshop marks an important anniversary. The inaugural workshop in this series also took place in Innsbruck in 1986, and brought together a small but enthusiastic group of thirty European statisticians interested in statistical modelling. The workshop arose out of two G LIM conferences in the U. K. in London (1982) and Lancaster (1985), and from a num ber of short courses organised by Murray Aitkin and held at Lancaster in the early 1980s, which attracted many European statisticians interested in Generalised Linear Modelling. The inaugural workshop in Innsbruck con centrated on GLMs and was characterised by a number of features - a friendly and supportive academic atmosphere, tutorial sessions and invited speakers presenting new developments in statistical modelling, and a very well organised social programme. The academic programme allowed plenty of time for presentation and for discussion, and made available copies of all papers beforehand. Over the intervening years, the workshop has grown substantially, and now regularly attracts over 150 participants. The scope of the workshop is now much broader, reflecting the growth in the subject of statistical modelling over ten years. The elements ofthe first workshop, however, are still present, and participants always find the meetings relevant and stimulating.
Publisher: Springer Science & Business Media
ISBN: 1461207894
Category : Mathematics
Languages : en
Pages : 328
Book Description
This volume presents the published proceedings of the lOth International Workshop on Statistical Modelling, to be held in Innsbruck, Austria from 10 to 14 July, 1995. This workshop marks an important anniversary. The inaugural workshop in this series also took place in Innsbruck in 1986, and brought together a small but enthusiastic group of thirty European statisticians interested in statistical modelling. The workshop arose out of two G LIM conferences in the U. K. in London (1982) and Lancaster (1985), and from a num ber of short courses organised by Murray Aitkin and held at Lancaster in the early 1980s, which attracted many European statisticians interested in Generalised Linear Modelling. The inaugural workshop in Innsbruck con centrated on GLMs and was characterised by a number of features - a friendly and supportive academic atmosphere, tutorial sessions and invited speakers presenting new developments in statistical modelling, and a very well organised social programme. The academic programme allowed plenty of time for presentation and for discussion, and made available copies of all papers beforehand. Over the intervening years, the workshop has grown substantially, and now regularly attracts over 150 participants. The scope of the workshop is now much broader, reflecting the growth in the subject of statistical modelling over ten years. The elements ofthe first workshop, however, are still present, and participants always find the meetings relevant and stimulating.
Markov Chain Monte Carlo in Practice
Author: W.R. Gilks
Publisher: CRC Press
ISBN: 1482214970
Category : Mathematics
Languages : en
Pages : 505
Book Description
In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France,
Publisher: CRC Press
ISBN: 1482214970
Category : Mathematics
Languages : en
Pages : 505
Book Description
In a family study of breast cancer, epidemiologists in Southern California increase the power for detecting a gene-environment interaction. In Gambia, a study helps a vaccination program reduce the incidence of Hepatitis B carriage. Archaeologists in Austria place a Bronze Age site in its true temporal location on the calendar scale. And in France,
Biomedical Image Analysis
Author: Aly A. Farag
Publisher: Cambridge University Press
ISBN: 0521196795
Category : Computers
Languages : en
Pages : 486
Book Description
Ideal for classroom use and self-study, this book explains the implementation of the most effective modern methods in image analysis, covering segmentation, registration and visualisation, and focusing on the key theories, algorithms and applications that have emerged from recent progress in computer vision, imaging and computational biomedical science. Structured around five core building blocks - signals, systems, image formation and modality; stochastic models; computational geometry; level set methods; and tools and CAD models - it provides a solid overview of the field. Mathematical and statistical topics are presented in a straightforward manner, enabling the reader to gain a deep understanding of the subject without becoming entangled in mathematical complexities. Theory is connected to practical examples in x-ray, ultrasound, nuclear medicine, MRI and CT imaging, removing the abstract nature of the models and assisting reader understanding.
Publisher: Cambridge University Press
ISBN: 0521196795
Category : Computers
Languages : en
Pages : 486
Book Description
Ideal for classroom use and self-study, this book explains the implementation of the most effective modern methods in image analysis, covering segmentation, registration and visualisation, and focusing on the key theories, algorithms and applications that have emerged from recent progress in computer vision, imaging and computational biomedical science. Structured around five core building blocks - signals, systems, image formation and modality; stochastic models; computational geometry; level set methods; and tools and CAD models - it provides a solid overview of the field. Mathematical and statistical topics are presented in a straightforward manner, enabling the reader to gain a deep understanding of the subject without becoming entangled in mathematical complexities. Theory is connected to practical examples in x-ray, ultrasound, nuclear medicine, MRI and CT imaging, removing the abstract nature of the models and assisting reader understanding.
Probabilistic Graphical Models
Author: Daphne Koller
Publisher: MIT Press
ISBN: 0262013193
Category : Computers
Languages : en
Pages : 1268
Book Description
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Publisher: MIT Press
ISBN: 0262013193
Category : Computers
Languages : en
Pages : 1268
Book Description
A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions. Most tasks require a person or an automated system to reason—to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality. Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Image Processing and Analysis
Author: Tony F. Chan
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Publisher: SIAM
ISBN: 089871589X
Category : Computers
Languages : en
Pages : 414
Book Description
This book develops the mathematical foundation of modern image processing and low-level computer vision, bridging contemporary mathematics with state-of-the-art methodologies in modern image processing, whilst organizing contemporary literature into a coherent and logical structure. The authors have integrated the diversity of modern image processing approaches by revealing the few common threads that connect them to Fourier and spectral analysis, the machinery that image processing has been traditionally built on. The text is systematic and well organized: the geometric, functional, and atomic structures of images are investigated, before moving to a rigorous development and analysis of several image processors. The book is comprehensive and integrative, covering the four most powerful classes of mathematical tools in contemporary image analysis and processing while exploring their intrinsic connections and integration. The material is balanced in theory and computation, following a solid theoretical analysis of model building and performance with computational implementation and numerical examples.
Field Theory, The Renormalization Group, And Critical Phenomena: Graphs To Computers (3rd Edition)
Author: Daniel J Amit
Publisher: World Scientific Publishing Company
ISBN: 9813102071
Category : Science
Languages : en
Pages : 568
Book Description
This volume links field theory methods and concepts from particle physics with those in critical phenomena and statistical mechanics, the development starting from the latter point of view. Rigor and lengthy proofs are trimmed by using the phenomenological framework of graphs, power counting, etc., and field theoretic methods with emphasis on renormalization group techniques. Non-perturbative methods and numerical simulations are introduced in this new edition. Abundant references to research literature complement this matter-of-fact approach. The book introduces quantum field theory to those already grounded in the concepts of statistical mechanics and advanced quantum theory, with sufficient exercises in each chapter for use as a textbook in a one-semester graduate course.The following new chapters are included:I. Real Space MethodsII. Finite Size ScalingIII. Monte Carlo Methods. Numerical Field Theory
Publisher: World Scientific Publishing Company
ISBN: 9813102071
Category : Science
Languages : en
Pages : 568
Book Description
This volume links field theory methods and concepts from particle physics with those in critical phenomena and statistical mechanics, the development starting from the latter point of view. Rigor and lengthy proofs are trimmed by using the phenomenological framework of graphs, power counting, etc., and field theoretic methods with emphasis on renormalization group techniques. Non-perturbative methods and numerical simulations are introduced in this new edition. Abundant references to research literature complement this matter-of-fact approach. The book introduces quantum field theory to those already grounded in the concepts of statistical mechanics and advanced quantum theory, with sufficient exercises in each chapter for use as a textbook in a one-semester graduate course.The following new chapters are included:I. Real Space MethodsII. Finite Size ScalingIII. Monte Carlo Methods. Numerical Field Theory
Selecting Models from Data
Author: P. Cheeseman
Publisher: Springer Science & Business Media
ISBN: 1461226600
Category : Mathematics
Languages : en
Pages : 475
Book Description
This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Publisher: Springer Science & Business Media
ISBN: 1461226600
Category : Mathematics
Languages : en
Pages : 475
Book Description
This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
VLSI for Neural Networks and Artificial Intelligence
Author: Jose G. Delgado-Frias
Publisher: Springer Science & Business Media
ISBN: 1489913319
Category : Computers
Languages : en
Pages : 318
Book Description
Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.
Publisher: Springer Science & Business Media
ISBN: 1489913319
Category : Computers
Languages : en
Pages : 318
Book Description
Neural network and artificial intelligence algorithrns and computing have increased not only in complexity but also in the number of applications. This in turn has posed a tremendous need for a larger computational power that conventional scalar processors may not be able to deliver efficiently. These processors are oriented towards numeric and data manipulations. Due to the neurocomputing requirements (such as non-programming and learning) and the artificial intelligence requirements (such as symbolic manipulation and knowledge representation) a different set of constraints and demands are imposed on the computer architectures/organizations for these applications. Research and development of new computer architectures and VLSI circuits for neural networks and artificial intelligence have been increased in order to meet the new performance requirements. This book presents novel approaches and trends on VLSI implementations of machines for these applications. Papers have been drawn from a number of research communities; the subjects span analog and digital VLSI design, computer design, computer architectures, neurocomputing and artificial intelligence techniques. This book has been organized into four subject areas that cover the two major categories of this book; the areas are: analog circuits for neural networks, digital implementations of neural networks, neural networks on multiprocessor systems and applications, and VLSI machines for artificial intelligence. The topics that are covered in each area are briefly introduced below.
Learning in Graphical Models
Author: M.I. Jordan
Publisher: Springer Science & Business Media
ISBN: 9401150141
Category : Computers
Languages : en
Pages : 658
Book Description
In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.
Publisher: Springer Science & Business Media
ISBN: 9401150141
Category : Computers
Languages : en
Pages : 658
Book Description
In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.