Stochastic Analysis in Discrete and Continuous Settings

Stochastic Analysis in Discrete and Continuous Settings PDF Author: Nicolas Privault
Publisher: Springer
ISBN: 3642023800
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
This monograph is an introduction to some aspects of stochastic analysis in the framework of normal martingales, in both discrete and continuous time. The text is mostly self-contained, except for Section 5.7 that requires some background in geometry, and should be accessible to graduate students and researchers having already received a basic training in probability. Prereq- sites are mostly limited to a knowledge of measure theory and probability, namely?-algebras,expectations,andconditionalexpectations.Ashortint- duction to stochastic calculus for continuous and jump processes is given in Chapter 2 using normal martingales, whose predictable quadratic variation is the Lebesgue measure. There already exists several books devoted to stochastic analysis for c- tinuous di?usion processes on Gaussian and Wiener spaces, cf. e.g. [51], [63], [65], [72], [83], [84], [92], [128], [134], [143], [146], [147]. The particular f- ture of this text is to simultaneously consider continuous processes and jump processes in the uni?ed framework of normal martingales.

Stochastic Analysis In Discrete And Continuous Settings

Stochastic Analysis In Discrete And Continuous Settings PDF Author:
Publisher: Springer
ISBN: 9783642023811
Category :
Languages : en
Pages : 321

Get Book Here

Book Description


Stochastic Control in Discrete and Continuous Time

Stochastic Control in Discrete and Continuous Time PDF Author: Atle Seierstad
Publisher: Springer Science & Business Media
ISBN: 0387766170
Category : Mathematics
Languages : en
Pages : 299

Get Book Here

Book Description
This book contains an introduction to three topics in stochastic control: discrete time stochastic control, i. e. , stochastic dynamic programming (Chapter 1), piecewise - terministic control problems (Chapter 3), and control of Ito diffusions (Chapter 4). The chapters include treatments of optimal stopping problems. An Appendix - calls material from elementary probability theory and gives heuristic explanations of certain more advanced tools in probability theory. The book will hopefully be of interest to students in several ?elds: economics, engineering, operations research, ?nance, business, mathematics. In economics and business administration, graduate students should readily be able to read it, and the mathematical level can be suitable for advanced undergraduates in mathem- ics and science. The prerequisites for reading the book are only a calculus course and a course in elementary probability. (Certain technical comments may demand a slightly better background. ) As this book perhaps (and hopefully) will be read by readers with widely diff- ing backgrounds, some general advice may be useful: Don’t be put off if paragraphs, comments, or remarks contain material of a seemingly more technical nature that you don’t understand. Just skip such material and continue reading, it will surely not be needed in order to understand the main ideas and results. The presentation avoids the use of measure theory.

Stochastic Analysis and Related Topics

Stochastic Analysis and Related Topics PDF Author: Fabrice Baudoin
Publisher: Birkhäuser
ISBN: 3319596713
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
The articles in this collection are a sampling of some of the research presented during the conference “Stochastic Analysis and Related Topics”, held in May of 2015 at Purdue University in honor of the 60th birthday of Rodrigo Bañuelos. A wide variety of topics in probability theory is covered in these proceedings, including heat kernel estimates, Malliavin calculus, rough paths differential equations, Lévy processes, Brownian motion on manifolds, and spin glasses, among other topics.

Stochastic Analysis, Filtering, and Stochastic Optimization

Stochastic Analysis, Filtering, and Stochastic Optimization PDF Author: George Yin
Publisher: Springer Nature
ISBN: 3030985199
Category : Mathematics
Languages : en
Pages : 466

Get Book Here

Book Description
This volume is a collection of research works to honor the late Professor Mark H.A. Davis, whose pioneering work in the areas of Stochastic Processes, Filtering, and Stochastic Optimization spans more than five decades. Invited authors include his dissertation advisor, past collaborators, colleagues, mentees, and graduate students of Professor Davis, as well as scholars who have worked in the above areas. Their contributions may expand upon topics in piecewise deterministic processes, pathwise stochastic calculus, martingale methods in stochastic optimization, filtering, mean-field games, time-inconsistency, as well as impulse, singular, risk-sensitive and robust stochastic control.

Stochastic Analysis for Poisson Point Processes

Stochastic Analysis for Poisson Point Processes PDF Author: Giovanni Peccati
Publisher: Springer
ISBN: 3319052330
Category : Mathematics
Languages : en
Pages : 359

Get Book Here

Book Description
Stochastic geometry is the branch of mathematics that studies geometric structures associated with random configurations, such as random graphs, tilings and mosaics. Due to its close ties with stereology and spatial statistics, the results in this area are relevant for a large number of important applications, e.g. to the mathematical modeling and statistical analysis of telecommunication networks, geostatistics and image analysis. In recent years – due mainly to the impetus of the authors and their collaborators – a powerful connection has been established between stochastic geometry and the Malliavin calculus of variations, which is a collection of probabilistic techniques based on the properties of infinite-dimensional differential operators. This has led in particular to the discovery of a large number of new quantitative limit theorems for high-dimensional geometric objects. This unique book presents an organic collection of authoritative surveys written by the principal actors in this rapidly evolving field, offering a rigorous yet lively presentation of its many facets.

Stochastic Calculus of Variations

Stochastic Calculus of Variations PDF Author: Yasushi Ishikawa
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110378078
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index

Wiener Chaos: Moments, Cumulants and Diagrams

Wiener Chaos: Moments, Cumulants and Diagrams PDF Author: Giovanni Peccati
Publisher: Springer Science & Business Media
ISBN: 8847016797
Category : Mathematics
Languages : en
Pages : 281

Get Book Here

Book Description
The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

Geometric Theory of Discrete Nonautonomous Dynamical Systems

Geometric Theory of Discrete Nonautonomous Dynamical Systems PDF Author: Christian Pötzsche
Publisher: Springer Science & Business Media
ISBN: 3642142575
Category : Mathematics
Languages : en
Pages : 422

Get Book Here

Book Description
The goal of this book is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes).

Computation of Greeks Using the Discrete Malliavin Calculus and Binomial Tree

Computation of Greeks Using the Discrete Malliavin Calculus and Binomial Tree PDF Author: Yoshifumi Muroi
Publisher: Springer Nature
ISBN: 9811910731
Category : Mathematics
Languages : en
Pages : 113

Get Book Here

Book Description
This book presents new computation schemes for the sensitivity of options using the binomial tree and introduces readers to the discrete Malliavin calculus. It also shows that applications of the discrete Malliavin calculus approach to the binomial tree model offer fundamental tools for computing Greeks. The binomial tree approach is one of the most popular methods in option pricing. Although it is a fairly traditional model for option pricing, it is still widely used in financial institutions since it is tractable and easy to understand. However, the book shows that the tree approach also offers a powerful tool for deriving the Greeks for options. Greeks are quantities that represent the sensitivities of the price of derivative securities with respect to changes in the underlying asset price or parameters. The Malliavin calculus, the stochastic methods of variations, is one of the most popular tools used to derive Greeks. However, it is also very difficult to understand for most students and practitioners because it is based on complex mathematics. To help readers more easily understand the Malliavin calculus, the book introduces the discrete Malliavin calculus, a theory of the functional for the Bernoulli random walk. The discrete Malliavin calculus is significantly easier to understand, because the functional space of the Bernoulli random walk is realized in a finite dimensional space. As such, it makes this valuable tool far more accessible for a broad readership.