Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and diagnostics, in preparation for project completion in 2009. Additional capabilities to support fusion ignition shots in a National Ignition Campaign (NIC) beginning in 2010 will include a cryogenic target system, target diagnostics, and integrated experimental shot data analysis with tools for data visualization and archiving. This talk discusses the current status of the control system implementation and discusses the plan to complete the control system on the path to ignition.

Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System

Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2

Get Book Here

Book Description
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

Status of the National Ignition Facility and Control System

Status of the National Ignition Facility and Control System PDF Author: R. W. Patterson
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into line replaceable units such as optical assemblies, amplifiers, and multi-function sensor packages containing thousands of adjusting motors and diagnostic points. NIF is operated by the Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 750 front-end processors and supervisory servers. Bundle control system partitions are replicated and commissioned by configuring the control database for each new bundle. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. ICCS software is approximately 80% complete with 1.1 million source lines of code delivered to the facility. NIF has successfully activated, commissioned and utilized the first four laser beams to conduct nearly 400 shots in 2003 and 2004, resulting in high quality data that could not be obtained on any other laser system. This presentation discusses NIF's early light commissioning, the status of the control system implementation and plans to complete installation of the remaining laser bundles on the path to fusion ignition.

Status of the National Ignition Facility Integrated Computer Control System

Status of the National Ignition Facility Integrated Computer Control System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Laser hardware is modularized into line replaceable units such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by the Integrated Computer Control System (ICCS). ICCS is a layered architecture of 300 front-end processors attached to nearly 60,000 control points and coordinated by supervisor subsystems in the main control room. The functional subsystems--beam control including automatic beam alignment and wavefront correction, laser pulse generation and pre-amplification, diagnostics, pulse power, and timing--implement automated shot control, archive data, and support the actions of fourteen operators at graphic consoles. Object-oriented software development uses a mixed language environment of Ada (for functional controls) and Java (for user interface and database backend). The ICCS distributed software framework uses CORBA to communicate between languages and processors. ICCS software is approximately 3/4 complete with over 750 thousand source lines of code having undergone off-line verification tests and deployed to the facility. NIF has entered the first phases of its laser commissioning program. NIF has now demonstrated the highest energy 1[omega], 2[omega], and 3[omega] beamlines in the world. NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This talk will provide a detailed look at the status of the control system.

Information Technology Applications in Industry, Computer Engineering and Materials Science

Information Technology Applications in Industry, Computer Engineering and Materials Science PDF Author: S.Z. Cai
Publisher: Trans Tech Publications Ltd
ISBN: 3038261513
Category : Technology & Engineering
Languages : en
Pages : 4840

Get Book Here

Book Description
Collection of selected, peer reviewed papers from the 2013 3rd International Conference on Materials Science and Information Technology (MSIT 2013), September 14-15, 2013, Nanjing, Jiangsu, China. The 958 papers are grouped as follows: Chapter 1: Materials Science and Engineering; Chapter 2: Mechatronics, Control, Testing, Measurement, Instrumentation, Detection and Monitoring Technologies; Chapter 3: Communication, Computer Engineering and Information Technologies; Chapter 4: Data Processing and Applied Computational Methods and Algorithms; Chapter 5: Power Systems and Electronics, Microelectronics and Embedded, Integrated Systems, Electric Applications; Chapter 6: Manufacturing, Industry Development and Automation.

The National Ignition Facility

The National Ignition Facility PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The National Ignition Facility (NIF), currently under construction at the Lawrence Livermore National Laboratory, is a stadium-sized facility containing a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for nearly 100 experimental diagnostics. When completed, NIF will be the world's largest and most energetic laser experimental system, providing an international center to study inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's 192 energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Laser hardware is modularized into line replaceable units such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by the Integrated Computer Control System (ICCS). ICCS is a layered architecture of 300 front-end processors attached to nearly 60,000 control points and coordinated by supervisor subsystems in the main control room. The functional subsystems--beam control including automatic beam alignment and wavefront correction, laser pulse generation and pre-amplification, diagnostics, pulse power, and timing--implement automated shot control, archive data, and support the actions of fourteen operators at graphic consoles. Object-oriented software development uses a mixed language environment of Ada (for functional controls) and Java (for user interface and database backend). The ICCS distributed software framework uses CORBA to communicate between languages and processors. ICCS software is approximately three quarters complete with over 750 thousand source lines of code having undergone off-line verification tests and deployed to the facility. NIF has entered the first phases of its laser commissioning program. NIF's highest 3[omega] single laser beam performance is 10.4 kJ, equivalent to 2 MJ for a fully activated NIF, exceeding the NIF energy point design of 1.8 MJ. In July 2003, 26.5 kJ of infrared light per beam was produced. NIF has now demonstrated the highest energy 1[Omega], 2[Omega], and 3[Omega] beamlines in the world. NIF's target experimental systems are also being installed in preparation for experiments to begin in late 2003. This talk will provide a detailed look at the initial deployment of the control system and the results of recent laser commissioning shots.

Status Of The National Ignition Facility (NIF) Integrated Computer Control And Information Systems*

Status Of The National Ignition Facility (NIF) Integrated Computer Control And Information Systems* PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description


National Ignition Facility Project Completion and Control System Status

National Ignition Facility Project Completion and Control System Status PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

The Overview of the National Ignition Facility Distributed Computer Control System

The Overview of the National Ignition Facility Distributed Computer Control System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is a layered architecture of 300 front-end processors (FEP) coordinated by supervisor subsystems including automatic beam alignment and wavefront control, laser and target diagnostics, pulse power, and shot control timed to 30 ps. FEP computers incorporate either VxWorks on PowerPC or Solaris on UltraSPARC processors that interface to over 45,000 control points attached to VME-bus or PCI-bus crates respectively. Typical devices are stepping motors, transient digitizers, calorimeters, and photodiodes. The front-end layer is divided into another segment comprised of an additional 14,000 control points for industrial controls including vacuum, argon, synthetic air, and safety interlocks implemented with Allen-Bradley programmable logic controllers (PLCs). The computer network is augmented asynchronous transfer mode (ATM) that delivers video streams from 500 sensor cameras monitoring the 192 laser beams to operator workstations. Software is based on an object-oriented framework using CORBA distribution that incorporates services for archiving, machine configuration, graphical user interface, monitoring, event logging, scripting, alert management, and access control. Software coding using a mixed language environment of Ada95 and Java is one-third complete at over 300 thousand source lines. Control system installation is currently under way for the first 8 beams, with project completion scheduled for 2008.

NIF ICCS Network Design and Loading Analysis

NIF ICCS Network Design and Loading Analysis PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The National Ignition Facility (NIF) is housed within a large facility about the size of two football fields. The Integrated Computer Control System (ICCS) is distributed throughout this facility and requires the integration of about 40,000 control points and over 500 video sources. This integration is provided by approximately 700 control computers distributed throughout the NIF facility and a network that provides the communication infrastructure. A main control room houses a set of seven computer consoles providing operator access and control of the various distributed front-end processors (FEPs). There are also remote workstations distributed within the facility that allow provide operator console functions while personnel are testing and troubleshooting throughout the facility. The operator workstations communicate with the FEPs which implement the localized control and monitoring functions. There are different types of FEPs for the various subsystems being controlled. This report describes the design of the NIF ICCS network and how it meets the traffic loads that will are expected and the requirements of the Sub-System Design Requirements (SSDR's). This document supersedes the earlier reports entitled Analysis of the National Ignition Facility Network, dated November 6, 1996 and The National Ignition Facility Digital Video and Control Network, dated July 9, 1996. For an overview of the ICCS, refer to the document NIF Integrated Computer Controls System Description (NIF-3738).