Author: Joseph Tal
Publisher: Academic Press
ISBN: 0123869099
Category : Mathematics
Languages : en
Pages : 279
Book Description
Delineates the statistical building blocks and concepts of clinical trials.
Strategy and Statistics in Clinical Trials
Statistical Issues in Drug Development
Author: Stephen S. Senn
Publisher: John Wiley & Sons
ISBN: 9780470723579
Category : Medical
Languages : en
Pages : 523
Book Description
Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.
Publisher: John Wiley & Sons
ISBN: 9780470723579
Category : Medical
Languages : en
Pages : 523
Book Description
Drug development is the process of finding and producingtherapeutically useful pharmaceuticals, turning them into safe andeffective medicine, and producing reliable information regardingthe appropriate dosage and dosing intervals. With regulatoryauthorities demanding increasingly higher standards in suchdevelopments, statistics has become an intrinsic and criticalelement in the design and conduct of drug development programmes. Statistical Issues in Drug Development presents anessential and thought provoking guide to the statistical issues andcontroversies involved in drug development. This highly readable second edition has been updated toinclude: Comprehensive coverage of the design and interpretation ofclinical trials. Expanded sections on missing data, equivalence, meta-analysisand dose finding. An examination of both Bayesian and frequentist methods. A new chapter on pharmacogenomics and expanded coverage ofpharmaco-epidemiology and pharmaco-economics. Coverage of the ICH guidelines, in particular ICH E9,Statistical Principles for Clinical Trials. It is hoped that the book will stimulate dialogue betweenstatisticians and life scientists working within the pharmaceuticalindustry. The accessible and wide-ranging coverage make itessential reading for both statisticians and non-statisticiansworking in the pharmaceutical industry, regulatory bodies andmedical research institutes. There is also much to benefitundergraduate and postgraduate students whose courses include amedical statistics component.
Bayesian Analysis with R for Drug Development
Author: Harry Yang
Publisher: CRC Press
ISBN: 1351585932
Category : Mathematics
Languages : en
Pages : 251
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Publisher: CRC Press
ISBN: 1351585932
Category : Mathematics
Languages : en
Pages : 251
Book Description
Drug development is an iterative process. The recent publications of regulatory guidelines further entail a lifecycle approach. Blending data from disparate sources, the Bayesian approach provides a flexible framework for drug development. Despite its advantages, the uptake of Bayesian methodologies is lagging behind in the field of pharmaceutical development. Written specifically for pharmaceutical practitioners, Bayesian Analysis with R for Drug Development: Concepts, Algorithms, and Case Studies, describes a wide range of Bayesian applications to problems throughout pre-clinical, clinical, and Chemistry, Manufacturing, and Control (CMC) development. Authored by two seasoned statisticians in the pharmaceutical industry, the book provides detailed Bayesian solutions to a broad array of pharmaceutical problems. Features Provides a single source of information on Bayesian statistics for drug development Covers a wide spectrum of pre-clinical, clinical, and CMC topics Demonstrates proper Bayesian applications using real-life examples Includes easy-to-follow R code with Bayesian Markov Chain Monte Carlo performed in both JAGS and Stan Bayesian software platforms Offers sufficient background for each problem and detailed description of solutions suitable for practitioners with limited Bayesian knowledge Harry Yang, Ph.D., is Senior Director and Head of Statistical Sciences at AstraZeneca. He has 24 years of experience across all aspects of drug research and development and extensive global regulatory experiences. He has published 6 statistical books, 15 book chapters, and over 90 peer-reviewed papers on diverse scientific and statistical subjects, including 15 joint statistical works with Dr. Novick. He is a frequent invited speaker at national and international conferences. He also developed statistical courses and conducted training at the FDA and USP as well as Peking University. Steven Novick, Ph.D., is Director of Statistical Sciences at AstraZeneca. He has extensively contributed statistical methods to the biopharmaceutical literature. Novick is a skilled Bayesian computer programmer and is frequently invited to speak at conferences, having developed and taught courses in several areas, including drug-combination analysis and Bayesian methods in clinical areas. Novick served on IPAC-RS and has chaired several national statistical conferences.
Small Clinical Trials
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221
Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221
Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
The Prevention and Treatment of Missing Data in Clinical Trials
Author: National Research Council
Publisher: National Academies Press
ISBN: 030918651X
Category : Medical
Languages : en
Pages : 163
Book Description
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Publisher: National Academies Press
ISBN: 030918651X
Category : Medical
Languages : en
Pages : 163
Book Description
Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.
Drug Utilization Research
Author: Monique Elseviers
Publisher: John Wiley & Sons
ISBN: 1118949781
Category : Medical
Languages : en
Pages : 548
Book Description
Drug Utilization Research (DUR) is an eclectic scientific discipline, integrating descriptive and analytical methods for the quantification, understanding and evaluation of the processes of prescribing, dispensing and consumption of medicines and for the testing of interventions to enhance the quality of these processes. The discipline is closely related and linked mainly to the broader field of pharmacoepidemiology, but also to health outcomes research, pharmacovigilance and health economics. Drug Utilization Research is a unique, practical guide to the assessment and evaluation of prescribing practices and to interventions to improve the use of medicines in populations. Edited by an international expert team from the International Society for Pharmacoepidemiology (ISPE), DUR is the only title to cover both the methodology and applications of drug utilization research and covers areas such as health policy, specific populations, therapeutics and adherence.
Publisher: John Wiley & Sons
ISBN: 1118949781
Category : Medical
Languages : en
Pages : 548
Book Description
Drug Utilization Research (DUR) is an eclectic scientific discipline, integrating descriptive and analytical methods for the quantification, understanding and evaluation of the processes of prescribing, dispensing and consumption of medicines and for the testing of interventions to enhance the quality of these processes. The discipline is closely related and linked mainly to the broader field of pharmacoepidemiology, but also to health outcomes research, pharmacovigilance and health economics. Drug Utilization Research is a unique, practical guide to the assessment and evaluation of prescribing practices and to interventions to improve the use of medicines in populations. Edited by an international expert team from the International Society for Pharmacoepidemiology (ISPE), DUR is the only title to cover both the methodology and applications of drug utilization research and covers areas such as health policy, specific populations, therapeutics and adherence.
Statistics in Drug Research
Author: Shein-Chung Chow
Publisher: CRC Press
ISBN: 0824743881
Category : Mathematics
Languages : en
Pages : 359
Book Description
Emphasizing the role of good statistical practices (GSP) in drug research and formulation, this book outlines important statistics applications for each stage of pharmaceutical development to ensure the valid design, analysis, and assessment of drug products under investigation and establish the safety and efficacy of pharmaceutical compounds. Coverage include statistical techniques for assay validation and evaluation of drug performance characteristics, testing population/individual bioequivalence and in vitro bioequivalence according to the most recent FDA guidelines, basic considerations for the design and analysis of therapeutic equivalence and noninferiority trials.
Publisher: CRC Press
ISBN: 0824743881
Category : Mathematics
Languages : en
Pages : 359
Book Description
Emphasizing the role of good statistical practices (GSP) in drug research and formulation, this book outlines important statistics applications for each stage of pharmaceutical development to ensure the valid design, analysis, and assessment of drug products under investigation and establish the safety and efficacy of pharmaceutical compounds. Coverage include statistical techniques for assay validation and evaluation of drug performance characteristics, testing population/individual bioequivalence and in vitro bioequivalence according to the most recent FDA guidelines, basic considerations for the design and analysis of therapeutic equivalence and noninferiority trials.
Introduction to Statistical Methods for Clinical Trials
Author: Thomas D. Cook
Publisher: CRC Press
ISBN: 1584880279
Category : Mathematics
Languages : en
Pages : 465
Book Description
Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials.
Publisher: CRC Press
ISBN: 1584880279
Category : Mathematics
Languages : en
Pages : 465
Book Description
Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials.
Introduction to Statistics in Pharmaceutical Clinical Trials
Author: Todd A. Durham
Publisher:
ISBN: 9780853697145
Category : Mathematics
Languages : en
Pages : 226
Book Description
All students of pharmaceutical sciences and clinical research need a solid knowledge and understanding of the nature, methods, application, and importance of statistics. Introduction to Statistics in Pharmaceutical Clinical Trials is an ideal introduction to statistics presented in the context of clinical trials conducted during pharmaceutical drug development. This novel approach both teaches the computational steps needed to conduct analyses and provides a conceptual understanding of how these analyses provide information that forms the rational basis for decision making throughout the drug development process.
Publisher:
ISBN: 9780853697145
Category : Mathematics
Languages : en
Pages : 226
Book Description
All students of pharmaceutical sciences and clinical research need a solid knowledge and understanding of the nature, methods, application, and importance of statistics. Introduction to Statistics in Pharmaceutical Clinical Trials is an ideal introduction to statistics presented in the context of clinical trials conducted during pharmaceutical drug development. This novel approach both teaches the computational steps needed to conduct analyses and provides a conceptual understanding of how these analyses provide information that forms the rational basis for decision making throughout the drug development process.
Bioequivalence Studies in Drug Development
Author: Dieter Hauschke
Publisher: Wiley
ISBN: 9780470094754
Category : Medical
Languages : en
Pages : 328
Book Description
Studies in bioequivalence are the commonly accepted method to demonstrate therapeutic equivalence between two medicinal products. Savings in time and cost are substantial when using bioequivalence as an established surrogate marker of therapeutic equivalence. For this reason the design, performance and evaluation of bioequivalence studies have received major attention from academia, the pharmaceutical industry and health authorities. Bioequivalence Studies in Drug Development focuses on the planning, conducting, analysing and reporting of bioequivalence studies, covering all aspects required by regulatory authorities. This text presents the required statistical methods, and with an outstanding practical emphasis, demonstrates their applications through numerous examples using real data from drug development. Includes all the necessary pharmacokinetic background information. Presents parametric and nonparametric statistical techniques. Describes adequate methods for power and sample size determination. Includes appropriate presentation of results from bioequivalence studies. Provides a practical overview of the design and analysis of bioequivalence studies. Presents the recent developments in methodology, including population and individual bioequivalence. Reviews the regulatory guidelines for such studies, and the existing global discrepancies. Discusses the designs and analyses of drug-drug and food-drug interaction studies. Bioequivalence Studies in Drug Development is written in an accessible style that makes it ideal for pharmaceutical scientists, clinical pharmacologists, and medical practitioners, as well as biometricians working in the pharmaceutical industry. It will also be of great value for professionals from regulatory bodies assessing bioequivalence studies.
Publisher: Wiley
ISBN: 9780470094754
Category : Medical
Languages : en
Pages : 328
Book Description
Studies in bioequivalence are the commonly accepted method to demonstrate therapeutic equivalence between two medicinal products. Savings in time and cost are substantial when using bioequivalence as an established surrogate marker of therapeutic equivalence. For this reason the design, performance and evaluation of bioequivalence studies have received major attention from academia, the pharmaceutical industry and health authorities. Bioequivalence Studies in Drug Development focuses on the planning, conducting, analysing and reporting of bioequivalence studies, covering all aspects required by regulatory authorities. This text presents the required statistical methods, and with an outstanding practical emphasis, demonstrates their applications through numerous examples using real data from drug development. Includes all the necessary pharmacokinetic background information. Presents parametric and nonparametric statistical techniques. Describes adequate methods for power and sample size determination. Includes appropriate presentation of results from bioequivalence studies. Provides a practical overview of the design and analysis of bioequivalence studies. Presents the recent developments in methodology, including population and individual bioequivalence. Reviews the regulatory guidelines for such studies, and the existing global discrepancies. Discusses the designs and analyses of drug-drug and food-drug interaction studies. Bioequivalence Studies in Drug Development is written in an accessible style that makes it ideal for pharmaceutical scientists, clinical pharmacologists, and medical practitioners, as well as biometricians working in the pharmaceutical industry. It will also be of great value for professionals from regulatory bodies assessing bioequivalence studies.