Statistical Remedies for Medical Researchers

Statistical Remedies for Medical Researchers PDF Author: Peter F. Thall
Publisher: Springer Nature
ISBN: 3030437140
Category : Medical
Languages : en
Pages : 297

Get Book Here

Book Description
This book illustrates numerous statistical practices that are commonly used by medical researchers, but which have severe flaws that may not be obvious. For each example, it provides one or more alternative statistical methods that avoid misleading or incorrect inferences being made. The technical level is kept to a minimum to make the book accessible to non-statisticians. At the same time, since many of the examples describe methods used routinely by medical statisticians with formal statistical training, the book appeals to a broad readership in the medical research community.

Dynamic Treatment Regimes

Dynamic Treatment Regimes PDF Author: Anastasios A. Tsiatis
Publisher: CRC Press
ISBN: 1498769780
Category : Mathematics
Languages : en
Pages : 619

Get Book Here

Book Description
Dynamic Treatment Regimes: Statistical Methods for Precision Medicine provides a comprehensive introduction to statistical methodology for the evaluation and discovery of dynamic treatment regimes from data. Researchers and graduate students in statistics, data science, and related quantitative disciplines with a background in probability and statistical inference and popular statistical modeling techniques will be prepared for further study of this rapidly evolving field. A dynamic treatment regime is a set of sequential decision rules, each corresponding to a key decision point in a disease or disorder process, where each rule takes as input patient information and returns the treatment option he or she should receive. Thus, a treatment regime formalizes how a clinician synthesizes patient information and selects treatments in practice. Treatment regimes are of obvious relevance to precision medicine, which involves tailoring treatment selection to patient characteristics in an evidence-based way. Of critical importance to precision medicine is estimation of an optimal treatment regime, one that, if used to select treatments for the patient population, would lead to the most beneficial outcome on average. Key methods for estimation of an optimal treatment regime from data are motivated and described in detail. A dedicated companion website presents full accounts of application of the methods using a comprehensive R package developed by the authors. The authors’ website www.dtr-book.com includes updates, corrections, new papers, and links to useful websites.

The Aging Population in the Twenty-First Century

The Aging Population in the Twenty-First Century PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309038812
Category : Medical
Languages : en
Pages : 340

Get Book Here

Book Description
It is not news that each of us grows old. What is relatively new, however, is that the average age of the American population is increasing. More and better information is required to assess, plan for, and meet the needs of a graying population. The Aging Population in the Twenty-First Century examines social, economic, and demographic changes among the aged, as well as many health-related topics: health promotion and disease prevention; quality of life; health care system financing and use; and the quality of careâ€"especially long-term care. Recommendations for increasing and improving the data availableâ€"as well as for ensuring timely access to themâ€"are also included.

Bayesian Designs for Phase I-II Clinical Trials

Bayesian Designs for Phase I-II Clinical Trials PDF Author: Ying Yuan
Publisher: CRC Press
ISBN: 1315354225
Category : Mathematics
Languages : en
Pages : 238

Get Book Here

Book Description
Reliably optimizing a new treatment in humans is a critical first step in clinical evaluation since choosing a suboptimal dose or schedule may lead to failure in later trials. At the same time, if promising preclinical results do not translate into a real treatment advance, it is important to determine this quickly and terminate the clinical evaluation process to avoid wasting resources. Bayesian Designs for Phase I–II Clinical Trials describes how phase I–II designs can serve as a bridge or protective barrier between preclinical studies and large confirmatory clinical trials. It illustrates many of the severe drawbacks with conventional methods used for early-phase clinical trials and presents numerous Bayesian designs for human clinical trials of new experimental treatment regimes. Written by research leaders from the University of Texas MD Anderson Cancer Center, this book shows how Bayesian designs for early-phase clinical trials can explore, refine, and optimize new experimental treatments. It emphasizes the importance of basing decisions on both efficacy and toxicity.

The Oxford Handbook of the Science of Science Communication

The Oxford Handbook of the Science of Science Communication PDF Author: Kathleen Hall Jamieson
Publisher: Oxford University Press
ISBN: 0190497629
Category : Psychology
Languages : en
Pages : 513

Get Book Here

Book Description
On topics from genetic engineering and mad cow disease to vaccination and climate change, this Handbook draws on the insights of 57 leading science of science communication scholars who explore what social scientists know about how citizens come to understand and act on what is known by science.

Statistical Methods for Health Care Research

Statistical Methods for Health Care Research PDF Author: Barbara Hazard Munro
Publisher: Lippincott Williams & Wilkins
ISBN: 9780781748407
Category : Medical
Languages : en
Pages : 518

Get Book Here

Book Description
Focusing on the statistical methods most frequently used in the health care literature and featuring numerous charts, graphs, and up-to-date examples from the literature, this text provides a thorough foundation for the statistics portion of nursing and all health care research courses. All Fifth Edition chapters include new examples and new computer printouts using the latest software, SPSS for Windows, Version 12. New material on regression diagnostics has been added.

Missing Data

Missing Data PDF Author: Patrick E. McKnight
Publisher: Guilford Press
ISBN: 1606238205
Category : Social Science
Languages : en
Pages : 269

Get Book Here

Book Description
While most books on missing data focus on applying sophisticated statistical techniques to deal with the problem after it has occurred, this volume provides a methodology for the control and prevention of missing data. In clear, nontechnical language, the authors help the reader understand the different types of missing data and their implications for the reliability, validity, and generalizability of a study’s conclusions. They provide practical recommendations for designing studies that decrease the likelihood of missing data, and for addressing this important issue when reporting study results. When statistical remedies are needed--such as deletion procedures, augmentation methods, and single imputation and multiple imputation procedures--the book also explains how to make sound decisions about their use. Patrick E. McKnight's website offers a periodically updated annotated bibliography on missing data and links to other Web resources that address missing data.

Statistical Design, Monitoring, and Analysis of Clinical Trials

Statistical Design, Monitoring, and Analysis of Clinical Trials PDF Author: Weichung Joe Shih
Publisher: CRC Press
ISBN: 9781003176527
Category : Medical
Languages : en
Pages : 380

Get Book Here

Book Description
Statistical Design, Monitoring, and Analysis of Clinical Trials, Second Edition concentrates on the biostatistics component of clinical trials. This new edition is updated throughout and includes five new chapters. Developed from the authors' courses taught to public health and medical students, residents, and fellows during the past 20 years, the text shows how biostatistics in clinical trials is an integration of many fundamental scientific principles and statistical methods. The book begins with ethical and safety principles, core trial design concepts, the principles and methods of sample size and power calculation, and analysis of covariance and stratified analysis. It then focuses on sequential designs and methods for two-stage Phase II cancer trials to Phase III group sequential trials, covering monitoring safety, futility, and efficacy. The authors also discuss the development of sample size reestimation and adaptive group sequential procedures, phase 2/3 seamless design and trials with predictive biomarkers, exploit multiple testing procedures, and explain the concept of estimand, intercurrent events, and different missing data processes, and describe how to analyze incomplete data by proper multiple imputations. This text reflects the academic research, commercial development, and public health aspects of clinical trials. It gives students and practitioners a multidisciplinary understanding of the concepts and techniques involved in designing, monitoring, and analyzing various types of trials. The book's balanced set of homework assignments and in-class exercises are appropriate for students and researchers in (bio)statistics, epidemiology, medicine, pharmacy, and public health.

Statistics Done Wrong

Statistics Done Wrong PDF Author: Alex Reinhart
Publisher: No Starch Press
ISBN: 1593276206
Category : Mathematics
Languages : en
Pages : 177

Get Book Here

Book Description
Scientific progress depends on good research, and good research needs good statistics. But statistical analysis is tricky to get right, even for the best and brightest of us. You'd be surprised how many scientists are doing it wrong. Statistics Done Wrong is a pithy, essential guide to statistical blunders in modern science that will show you how to keep your research blunder-free. You'll examine embarrassing errors and omissions in recent research, learn about the misconceptions and scientific politics that allow these mistakes to happen, and begin your quest to reform the way you and your peers do statistics. You'll find advice on: –Asking the right question, designing the right experiment, choosing the right statistical analysis, and sticking to the plan –How to think about p values, significance, insignificance, confidence intervals, and regression –Choosing the right sample size and avoiding false positives –Reporting your analysis and publishing your data and source code –Procedures to follow, precautions to take, and analytical software that can help Scientists: Read this concise, powerful guide to help you produce statistically sound research. Statisticians: Give this book to everyone you know. The first step toward statistics done right is Statistics Done Wrong.

Statistical Inference Via Convex Optimization

Statistical Inference Via Convex Optimization PDF Author: Anatoli Juditsky
Publisher: Princeton University Press
ISBN: 0691197296
Category : Mathematics
Languages : en
Pages : 655

Get Book Here

Book Description
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.