Statistical Physics

Statistical Physics PDF Author: Gregory H. Wannier
Publisher: Courier Corporation
ISBN: 048665401X
Category : Science
Languages : en
Pages : 561

Get Book Here

Book Description
Classic text combines thermodynamics, statistical mechanics, and kinetic theory in one unified presentation. Topics include equilibrium statistics of special systems, kinetic theory, transport coefficients, and fluctuations. Problems with solutions. 1966 edition.

Statistical Physics of Fields

Statistical Physics of Fields PDF Author: Mehran Kardar
Publisher: Cambridge University Press
ISBN: 1139855883
Category : Science
Languages : en
Pages : 376

Get Book Here

Book Description
While many scientists are familiar with fractals, fewer are familiar with scale-invariance and universality which underlie the ubiquity of their shapes. These properties may emerge from the collective behaviour of simple fundamental constituents, and are studied using statistical field theories. Initial chapters connect the particulate perspective developed in the companion volume, to the coarse grained statistical fields studied here. Based on lectures taught by Professor Kardar at MIT, this textbook demonstrates how such theories are formulated and studied. Perturbation theory, exact solutions, renormalization groups, and other tools are employed to demonstrate the emergence of scale invariance and universality, and the non-equilibrium dynamics of interfaces and directed paths in random media are discussed. Ideal for advanced graduate courses in statistical physics, it contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set available to lecturers at www.cambridge.org/9780521873413.

Statistical and Thermal Physics

Statistical and Thermal Physics PDF Author: Harvey Gould
Publisher: Princeton University Press
ISBN: 0691230846
Category : Science
Languages : en
Pages : 528

Get Book Here

Book Description
A completely revised edition that combines a comprehensive coverage of statistical and thermal physics with enhanced computational tools, accessibility, and active learning activities to meet the needs of today's students and educators This revised and expanded edition of Statistical and Thermal Physics introduces students to the essential ideas and techniques used in many areas of contemporary physics. Ready-to-run programs help make the many abstract concepts concrete. The text requires only a background in introductory mechanics and some basic ideas of quantum theory, discussing material typically found in undergraduate texts as well as topics such as fluids, critical phenomena, and computational techniques, which serve as a natural bridge to graduate study. Completely revised to be more accessible to students Encourages active reading with guided problems tied to the text Updated open source programs available in Java, Python, and JavaScript Integrates Monte Carlo and molecular dynamics simulations and other numerical techniques Self-contained introductions to thermodynamics and probability, including Bayes' theorem A fuller discussion of magnetism and the Ising model than other undergraduate texts Treats ideal classical and quantum gases within a uniform framework Features a new chapter on transport coefficients and linear response theory Draws on findings from contemporary research Solutions manual (available only to instructors)

Introduction to Statistical Physics

Introduction to Statistical Physics PDF Author: João Paulo Casquilho
Publisher: Cambridge University Press
ISBN: 1316213994
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
Rigorous and comprehensive, this textbook introduces undergraduate students to simulation methods in statistical physics. The book covers a number of topics, including the thermodynamics of magnetic and electric systems; the quantum-mechanical basis of magnetism; ferrimagnetism, antiferromagnetism, spin waves and magnons; liquid crystals as a non-ideal system of technological relevance; and diffusion in an external potential. It also covers hot topics such as cosmic microwave background, magnetic cooling and Bose–Einstein condensation. The book provides an elementary introduction to simulation methods through algorithms in pseudocode for random walks, the 2D Ising model, and a model liquid crystal. Any formalism is kept simple and derivations are worked out in detail to ensure the material is accessible to students from subjects other than physics.

Statistical Physics of Particles

Statistical Physics of Particles PDF Author: Mehran Kardar
Publisher: Cambridge University Press
ISBN: 1139464876
Category : Science
Languages : en
Pages : 211

Get Book Here

Book Description
Statistical physics has its origins in attempts to describe the thermal properties of matter in terms of its constituent particles, and has played a fundamental role in the development of quantum mechanics. Based on lectures taught by Professor Kardar at MIT, this textbook introduces the central concepts and tools of statistical physics. It contains a chapter on probability and related issues such as the central limit theorem and information theory, and covers interacting particles, with an extensive description of the van der Waals equation and its derivation by mean field approximation. It also contains an integrated set of problems, with solutions to selected problems at the end of the book and a complete set of solutions is available to lecturers on a password protected website at www.cambridge.org/9780521873420. A companion volume, Statistical Physics of Fields, discusses non-mean field aspects of scaling and critical phenomena, through the perspective of renormalization group.

Statistical Physics I

Statistical Physics I PDF Author: Morikazu Toda
Publisher: Springer Science & Business Media
ISBN: 364258134X
Category : Science
Languages : en
Pages : 266

Get Book Here

Book Description
Statistical Physics I discusses the fundamentals of equilibrium statistical mechanics, focussing on basic physical aspects. No previous knowledge of thermodynamics or the molecular theory of gases is assumed. Illustrative examples based on simple materials and photon systems elucidate the central ideas and methods.

Statistical Physics

Statistical Physics PDF Author: Daijiro Yoshioka
Publisher: Springer Science & Business Media
ISBN: 3540286063
Category : Science
Languages : en
Pages : 206

Get Book Here

Book Description
This book provides a comprehensive presentation of the basics of statistical physics. The first part explains the essence of statistical physics and how it provides a bridge between microscopic and macroscopic phenomena, allowing one to derive quantities such as entropy. Here the author avoids going into details such as Liouville’s theorem or the ergodic theorem, which are difficult for beginners and unnecessary for the actual application of the statistical mechanics. In the second part, statistical mechanics is applied to various systems which, although they look different, share the same mathematical structure. In this way readers can deepen their understanding of statistical physics. The book also features applications to quantum dynamics, thermodynamics, the Ising model and the statistical dynamics of free spins.

The Principles of Statistical Mechanics

The Principles of Statistical Mechanics PDF Author: Richard Chace Tolman
Publisher: Courier Corporation
ISBN: 9780486638966
Category : Science
Languages : en
Pages : 700

Get Book Here

Book Description
This is the definitive treatise on the fundamentals of statistical mechanics. A concise exposition of classical statistical mechanics is followed by a thorough elucidation of quantum statistical mechanics: postulates, theorems, statistical ensembles, changes in quantum mechanical systems with time, and more. The final two chapters discuss applications of statistical mechanics to thermodynamic behavior. 1930 edition.

Introduction to Mathematical Statistical Physics

Introduction to Mathematical Statistical Physics PDF Author: Robert Adolʹfovich Minlos
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114

Get Book Here

Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.

Statistical Physics I

Statistical Physics I PDF Author: M. Toda
Publisher: Springer Science & Business Media
ISBN: 3642966985
Category : Science
Languages : en
Pages : 267

Get Book Here

Book Description
This first volume of Statistical Physics is an introduction to the theories of equilibrium statistical mechanics, whereas the second volume (Springer Ser. Solid-State Sci., Vol. 31) is devoted to non equilibrium theories. Particular emphasis is placed on fundamental principles and basic con cepts and ideas. We start with physical examples of probability and kinetics, and then describe the general principles of statistical mechanics, with appli cations to quantum statistics, imperfect gases, electrolytes, and phase tran sitions, including critical phenomena. Finally, ergodic problems, the me chanical basis of statistical mechanics, are presented. The original text was written in Japanese as a volume of the Iwanami Series in Fundamental Physics, supervised by Professor H. Yukawa. The first edition was published in 1973 and the second in 1978. The English edition has been divided into two volumes at the request of the publisher, and the chapter on ergodic problems, which was at the end of the original book, is included here as Chapter 5. Chapters 1,2,3 and part of Chapter 4 were written by M. Toda, and Chapters 4 and 5 by N. Saito. More extensive references have been added for further reading, and some parts of the final chapters have been revised to bring the text up to date. It is a pleasure to express my gratitude to Professor P. Fulde for his detailed improvements in the manuscript, and to Dr. H. Lotsch of Springer Verlag for his continued cooperation.