Author: G. Arminger
Publisher: Springer Science & Business Media
ISBN: 1489912924
Category : Psychology
Languages : en
Pages : 603
Book Description
Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
Handbook of Statistical Modeling for the Social and Behavioral Sciences
Author: G. Arminger
Publisher: Springer Science & Business Media
ISBN: 1489912924
Category : Psychology
Languages : en
Pages : 603
Book Description
Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
Publisher: Springer Science & Business Media
ISBN: 1489912924
Category : Psychology
Languages : en
Pages : 603
Book Description
Contributors thoroughly survey the most important statistical models used in empirical reserch in the social and behavioral sciences. Following a common format, each chapter introduces a model, illustrates the types of problems and data for which the model is best used, provides numerous examples that draw upon familiar models or procedures, and includes material on software that can be used to estimate the models studied. This handbook will aid researchers, methodologists, graduate students, and statisticians to understand and resolve common modeling problems.
Statistical Methods for the Social and Behavioural Sciences
Author: David B. Flora
Publisher: SAGE
ISBN: 1526421925
Category : Social Science
Languages : en
Pages : 786
Book Description
Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.
Publisher: SAGE
ISBN: 1526421925
Category : Social Science
Languages : en
Pages : 786
Book Description
Statistical methods in modern research increasingly entail developing, estimating and testing models for data. Rather than rigid methods of data analysis, the need today is for more flexible methods for modelling data. In this logical, easy-to-follow and exceptionally clear book, David Flora provides a comprehensive survey of the major statistical procedures currently used. His innovative model-based approach teaches you how to: Understand and choose the right statistical model to fit your data Match substantive theory and statistical models Apply statistical procedures hands-on, with example data analyses Develop and use graphs to understand data and fit models to data Work with statistical modeling principles using any software package Learn by applying, with input and output files for R, SAS, SPSS, and Mplus. Statistical Methods for the Social and Behavioural Sciences: A Model Based Approach is the essential guide for those looking to extend their understanding of the principles of statistics, and begin using the right statistical modeling method for their own data. It is particularly suited to second or advanced courses in statistical methods across the social and behavioural sciences.
Statistical Test Theory for the Behavioral Sciences
Author: Dato N. M. de Gruijter
Publisher: CRC Press
ISBN: 1584889594
Category : Mathematics
Languages : en
Pages : 282
Book Description
Since the development of the first intelligence test in the early 20th century, educational and psychological tests have become important measurement techniques to quantify human behavior. Focusing on this ubiquitous yet fruitful area of research, Statistical Test Theoryfor the Behavioral Sciences provides both a broad overview and a
Publisher: CRC Press
ISBN: 1584889594
Category : Mathematics
Languages : en
Pages : 282
Book Description
Since the development of the first intelligence test in the early 20th century, educational and psychological tests have become important measurement techniques to quantify human behavior. Focusing on this ubiquitous yet fruitful area of research, Statistical Test Theoryfor the Behavioral Sciences provides both a broad overview and a
Behavioral Social Choice
Author: Michel Regenwetter
Publisher: Cambridge University Press
ISBN: 0521829682
Category : Political Science
Languages : en
Pages : 21
Book Description
Behavioral Social Choice looks at the probabilistic foundations of collective decision-making rules. The authors challenge much of the existing theoretical wisdom about social choice processes, and seek to restore faith in the possibility of democratic decision-making. In particular, they argue that worries about the supposed prevalence of majority rule cycles that would preclude groups from reaching a final decision about what alternative they prefer have been greatly overstated. In practice, majority rule can be expected to work well in most real-world settings. They provide new insights into how alternative model specifications can change our estimates of social orderings.
Publisher: Cambridge University Press
ISBN: 0521829682
Category : Political Science
Languages : en
Pages : 21
Book Description
Behavioral Social Choice looks at the probabilistic foundations of collective decision-making rules. The authors challenge much of the existing theoretical wisdom about social choice processes, and seek to restore faith in the possibility of democratic decision-making. In particular, they argue that worries about the supposed prevalence of majority rule cycles that would preclude groups from reaching a final decision about what alternative they prefer have been greatly overstated. In practice, majority rule can be expected to work well in most real-world settings. They provide new insights into how alternative model specifications can change our estimates of social orderings.
Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research
Author: Robert T. Gerlai
Publisher: Academic Press
ISBN: 0128041161
Category : Science
Languages : en
Pages : 710
Book Description
Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists. - Focuses on new techniques, including electrocorticography, functional mapping, stereo EEG, motor evoked potentials, optical coherence tomography, magnetoencephalography, laser evoked potentials, transmagnetic stimulation, and motor evoked potentials - Presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior - Written and edited by leading international experts
Publisher: Academic Press
ISBN: 0128041161
Category : Science
Languages : en
Pages : 710
Book Description
Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior, a critical piece of the puzzle for clinicians, scientists, course instructors and advanced undergraduate and graduate students. Chapters examine neuroinformatics, genetic and neurobehavioral databases and data mining, also providing an analysis of natural genetic variation and principles and applications of forward (mutagenesis) and reverse genetics (gene targeting). In addition, the book discusses gene expression and its role in brain function and behavior, along with ethical issues in the use of animals in genetics testing. Written and edited by leading international experts, this book provides a clear presentation of the frontiers of basic research as well as translationally relevant techniques that are used by neurobehavioral geneticists. - Focuses on new techniques, including electrocorticography, functional mapping, stereo EEG, motor evoked potentials, optical coherence tomography, magnetoencephalography, laser evoked potentials, transmagnetic stimulation, and motor evoked potentials - Presents the most exciting molecular and recombinant DNA techniques used in the analysis of brain function and behavior - Written and edited by leading international experts
Statistical Power Analysis for the Behavioral Sciences
Author: Jacob Cohen
Publisher: Routledge
ISBN: 1134742770
Category : Psychology
Languages : en
Pages : 625
Book Description
Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.
Publisher: Routledge
ISBN: 1134742770
Category : Psychology
Languages : en
Pages : 625
Book Description
Statistical Power Analysis is a nontechnical guide to power analysis in research planning that provides users of applied statistics with the tools they need for more effective analysis. The Second Edition includes: * a chapter covering power analysis in set correlation and multivariate methods; * a chapter considering effect size, psychometric reliability, and the efficacy of "qualifying" dependent variables and; * expanded power and sample size tables for multiple regression/correlation.
Statistical Models in Behavioral Research
Author: William Kaye Estes
Publisher: Psychology Press
ISBN: 9780805806885
Category : Psychology
Languages : en
Pages : 180
Book Description
First Published in 1991. Routledge is an imprint of Taylor & Francis, an informa company.
Publisher: Psychology Press
ISBN: 9780805806885
Category : Psychology
Languages : en
Pages : 180
Book Description
First Published in 1991. Routledge is an imprint of Taylor & Francis, an informa company.
Statistical Power Analysis for the Social and Behavioral Sciences
Author: Xiaofeng Steven Liu
Publisher: Routledge
ISBN: 1136464182
Category : Psychology
Languages : en
Pages : 285
Book Description
This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
Publisher: Routledge
ISBN: 1136464182
Category : Psychology
Languages : en
Pages : 285
Book Description
This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
Essentials of Structural Equation Modeling
Author: Mustafa Emre Civelek
Publisher: Lulu.com
ISBN: 1609621298
Category : Business & Economics
Languages : en
Pages : 120
Book Description
Structural Equation Modeling is a statistical method increasingly used in scientific studies in the fields of Social Sciences. It is currently a preferred analysis method, especially in doctoral dissertations and academic researches. Many universities do not include this method in the curriculum, so students and scholars try to solve these problems using books and internet resources. This book aims to guide the researcher in a way that is free from math expressions. It teaches the steps of a research program using structured equality modeling practically. For students writing theses and scholars preparing academic articles, this book aims to analyze systematically the methodology of studies conducted using structural equation modeling methods in the social sciences. In as simple language as possible, it conveys basic information. It consists of two parts: the first gives basic concepts of structural equation modeling, and the second gives examples of applications.
Publisher: Lulu.com
ISBN: 1609621298
Category : Business & Economics
Languages : en
Pages : 120
Book Description
Structural Equation Modeling is a statistical method increasingly used in scientific studies in the fields of Social Sciences. It is currently a preferred analysis method, especially in doctoral dissertations and academic researches. Many universities do not include this method in the curriculum, so students and scholars try to solve these problems using books and internet resources. This book aims to guide the researcher in a way that is free from math expressions. It teaches the steps of a research program using structured equality modeling practically. For students writing theses and scholars preparing academic articles, this book aims to analyze systematically the methodology of studies conducted using structural equation modeling methods in the social sciences. In as simple language as possible, it conveys basic information. It consists of two parts: the first gives basic concepts of structural equation modeling, and the second gives examples of applications.
Advanced Statistics for the Behavioral Sciences
Author: Jonathon D. Brown
Publisher: Springer
ISBN: 3319935496
Category : Social Science
Languages : en
Pages : 539
Book Description
This book demonstrates the importance of computer-generated statistical analyses in behavioral science research, particularly those using the R software environment. Statistical methods are being increasingly developed and refined by computer scientists, with expertise in writing efficient and elegant computer code. Unfortunately, many researchers lack this programming background, leaving them to accept on faith the black-box output that emerges from the sophisticated statistical models they frequently use. Building on the author’s previous volume, Linear Models in Matrix Form, this text bridges the gap between computer science and research application, providing easy-to-follow computer code for many statistical analyses using the R software environment. The text opens with a foundational section on linear algebra, then covers a variety of advanced topics, including robust regression, model selection based on bias and efficiency, nonlinear models and optimization routines, generalized linear models, and survival and time-series analysis. Each section concludes with a presentation of the computer code used to illuminate the analysis, as well as pointers to packages in R that can be used for similar analyses and nonstandard cases. The accessible code and breadth of topics make this book an ideal tool for graduate students or researchers in the behavioral sciences who are interested in performing advanced statistical analyses without having a sophisticated background in computer science and mathematics.
Publisher: Springer
ISBN: 3319935496
Category : Social Science
Languages : en
Pages : 539
Book Description
This book demonstrates the importance of computer-generated statistical analyses in behavioral science research, particularly those using the R software environment. Statistical methods are being increasingly developed and refined by computer scientists, with expertise in writing efficient and elegant computer code. Unfortunately, many researchers lack this programming background, leaving them to accept on faith the black-box output that emerges from the sophisticated statistical models they frequently use. Building on the author’s previous volume, Linear Models in Matrix Form, this text bridges the gap between computer science and research application, providing easy-to-follow computer code for many statistical analyses using the R software environment. The text opens with a foundational section on linear algebra, then covers a variety of advanced topics, including robust regression, model selection based on bias and efficiency, nonlinear models and optimization routines, generalized linear models, and survival and time-series analysis. Each section concludes with a presentation of the computer code used to illuminate the analysis, as well as pointers to packages in R that can be used for similar analyses and nonstandard cases. The accessible code and breadth of topics make this book an ideal tool for graduate students or researchers in the behavioral sciences who are interested in performing advanced statistical analyses without having a sophisticated background in computer science and mathematics.