Statistical Modeling for Biomedical Researchers

Statistical Modeling for Biomedical Researchers PDF Author: William D. Dupont
Publisher: Cambridge University Press
ISBN: 0521849527
Category : Medical
Languages : en
Pages : 543

Get Book Here

Book Description
A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.

Statistical Modeling for Biomedical Researchers

Statistical Modeling for Biomedical Researchers PDF Author: William D. Dupont
Publisher: Cambridge University Press
ISBN: 0521849527
Category : Medical
Languages : en
Pages : 543

Get Book Here

Book Description
A second edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.

Statistical Modeling for Biomedical Researchers

Statistical Modeling for Biomedical Researchers PDF Author:
Publisher:
ISBN: 9780511480102
Category : Medicine
Languages : en
Pages : 522

Get Book Here

Book Description
New edition of the easy-to-use standard text guiding biomedical researchers in the use of advanced statistical methods.

Statistical Modeling in Biomedical Research

Statistical Modeling in Biomedical Research PDF Author: Yichuan Zhao
Publisher: Springer Nature
ISBN: 3030334163
Category : Medical
Languages : en
Pages : 495

Get Book Here

Book Description
This edited collection discusses the emerging topics in statistical modeling for biomedical research. Leading experts in the frontiers of biostatistics and biomedical research discuss the statistical procedures, useful methods, and their novel applications in biostatistics research. Interdisciplinary in scope, the volume as a whole reflects the latest advances in statistical modeling in biomedical research, identifies impactful new directions, and seeks to drive the field forward. It also fosters the interaction of scholars in the arena, offering great opportunities to stimulate further collaborations. This book will appeal to industry data scientists and statisticians, researchers, and graduate students in biostatistics and biomedical science. It covers topics in: Next generation sequence data analysis Deep learning, precision medicine, and their applications Large scale data analysis and its applications Biomedical research and modeling Survival analysis with complex data structure and its applications.

Statistical Methods for the Analysis of Biomedical Data

Statistical Methods for the Analysis of Biomedical Data PDF Author: Robert F. Woolson
Publisher: John Wiley & Sons
ISBN: 111803130X
Category : Medical
Languages : en
Pages : 714

Get Book Here

Book Description
Dieser Band behandelt eine Reihe statistischer Themen, die bei der Analyse biologischer und medizinischer Daten allgemein Anwendung finden. Diese 2. Auflage wurde komplett überarbeitet, aktualisiert und erweitert. Einige Kapitel sind neu hinzugekommen, u.a. zur multiplen linearen Regression in der biomedizinischen Forschung. Der Stoff ist so gegliedert, dass der Leser den Text unabhängig von der jeweiligen statistischen Methode leicht nach Problemstellungen durchsuchen kann. Mit zahlreichen durchgearbeiteten Beispielen, die detaillierte Lösungsangaben zu Problemen aus der Praxis liefern.

Essential Statistical Methods for Medical Statistics

Essential Statistical Methods for Medical Statistics PDF Author: J. Philip Miller
Publisher: Elsevier
ISBN: 0444537384
Category : Mathematics
Languages : en
Pages : 363

Get Book Here

Book Description
Essential Statistical Methods for Medical Statistics presents only key contributions which have been selected from the volume in the Handbook of Statistics: Medical Statistics, Volume 27 (2009). While the use of statistics in these fields has a long and rich history, the explosive growth of science in general, and of clinical and epidemiological sciences in particular, has led to the development of new methods and innovative adaptations of standard methods. This volume is appropriately focused for individuals working in these fields. Contributors are internationally renowned experts in their respective areas. - Contributors are internationally renowned experts in their respective areas - Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research - Methods for assessing Biomarkers, analysis of competing risks - Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs - Structural equations modelling and longitudinal data analysis

Regression Modeling Strategies

Regression Modeling Strategies PDF Author: Frank E. Harrell
Publisher: Springer Science & Business Media
ISBN: 147573462X
Category : Mathematics
Languages : en
Pages : 583

Get Book Here

Book Description
Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".

Innovative Statistical Methods for Public Health Data

Innovative Statistical Methods for Public Health Data PDF Author: Ding-Geng (Din) Chen
Publisher: Springer
ISBN: 3319185365
Category : Medical
Languages : en
Pages : 354

Get Book Here

Book Description
The book brings together experts working in public health and multi-disciplinary areas to present recent issues in statistical methodological development and their applications. This timely book will impact model development and data analyses of public health research across a wide spectrum of analysis. Data and software used in the studies are available for the reader to replicate the models and outcomes. The fifteen chapters range in focus from techniques for dealing with missing data with Bayesian estimation, health surveillance and population definition and implications in applied latent class analysis, to multiple comparison and meta-analysis in public health data. Researchers in biomedical and public health research will find this book to be a useful reference and it can be used in graduate level classes.

Regression Methods in Biostatistics

Regression Methods in Biostatistics PDF Author: Eric Vittinghoff
Publisher: Springer Science & Business Media
ISBN: 1461413524
Category : Education
Languages : en
Pages : 526

Get Book Here

Book Description
This fresh edition, substantially revised and augmented, provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics. The examples used, analyzed using Stata, can be applied to other areas.

Small Clinical Trials

Small Clinical Trials PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221

Get Book Here

Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.

Epidemiology and Medical Statistics

Epidemiology and Medical Statistics PDF Author:
Publisher: Elsevier
ISBN: 0080554210
Category : Mathematics
Languages : en
Pages : 871

Get Book Here

Book Description
This volume, representing a compilation of authoritative reviews on a multitude of uses of statistics in epidemiology and medical statistics written by internationally renowned experts, is addressed to statisticians working in biomedical and epidemiological fields who use statistical and quantitative methods in their work. While the use of statistics in these fields has a long and rich history, explosive growth of science in general and clinical and epidemiological sciences in particular have gone through a see of change, spawning the development of new methods and innovative adaptations of standard methods. Since the literature is highly scattered, the Editors have undertaken this humble exercise to document a representative collection of topics of broad interest to diverse users. The volume spans a cross section of standard topics oriented toward users in the current evolving field, as well as special topics in much need which have more recent origins. This volume was prepared especially keeping the applied statisticians in mind, emphasizing applications-oriented methods and techniques, including references to appropriate software when relevant.· Contributors are internationally renowned experts in their respective areas· Addresses emerging statistical challenges in epidemiological, biomedical, and pharmaceutical research· Methods for assessing Biomarkers, analysis of competing risks· Clinical trials including sequential and group sequential, crossover designs, cluster randomized, and adaptive designs· Structural equations modelling and longitudinal data analysis