Author: Chandra Shekhar
Publisher: CRC Press
ISBN: 1040031471
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
In an era dominated by mathematical and statistical models, this book unravels the profound significance of these tools in decoding uncertainties within numerical, observational, and calculation-based data. From governmental institutions to private entities, statistical prediction models provide a critical framework for optimal decision-making, offering nuanced insights into diverse realms, from climate to production and beyond. This book ·Serves as a comprehensive resource in statistical modeling, methodologies, and optimization techniques across various domains. ·Features contributions from global authors; the compilation comprises 10 insightful chapters, each addressing critical aspects of estimation and optimization through statistical modeling. ·Covers a spectrum of topics, from non-parametric goodness-of-fit statistics to Bayesian applications; the book explores novel resampling methods, advanced measures for empirical mode, and transient behavior analysis in queueing systems. ·Includes asymptotic properties of goodness-of-fit statistics, practical applications of Bayesian Statistics, modifications to the Hard EM algorithm, and explicit transient probabilities. ·Culminates with an exploration of an inventory model for perishable items, integrating preservation technology and learning effects to determine the economic order quantity. This book stands as a testament to global collaboration, offering a rich tapestry of commendable statistical and mathematical modeling alongside real-world problem-solving. It is poised to ignite further exploration, discussion, and innovation in the realms of statistical modeling and optimization.
Statistical Modeling and Applications on Real-Time Problems
Author: Chandra Shekhar
Publisher: CRC Press
ISBN: 1040031471
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
In an era dominated by mathematical and statistical models, this book unravels the profound significance of these tools in decoding uncertainties within numerical, observational, and calculation-based data. From governmental institutions to private entities, statistical prediction models provide a critical framework for optimal decision-making, offering nuanced insights into diverse realms, from climate to production and beyond. This book ·Serves as a comprehensive resource in statistical modeling, methodologies, and optimization techniques across various domains. ·Features contributions from global authors; the compilation comprises 10 insightful chapters, each addressing critical aspects of estimation and optimization through statistical modeling. ·Covers a spectrum of topics, from non-parametric goodness-of-fit statistics to Bayesian applications; the book explores novel resampling methods, advanced measures for empirical mode, and transient behavior analysis in queueing systems. ·Includes asymptotic properties of goodness-of-fit statistics, practical applications of Bayesian Statistics, modifications to the Hard EM algorithm, and explicit transient probabilities. ·Culminates with an exploration of an inventory model for perishable items, integrating preservation technology and learning effects to determine the economic order quantity. This book stands as a testament to global collaboration, offering a rich tapestry of commendable statistical and mathematical modeling alongside real-world problem-solving. It is poised to ignite further exploration, discussion, and innovation in the realms of statistical modeling and optimization.
Publisher: CRC Press
ISBN: 1040031471
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
In an era dominated by mathematical and statistical models, this book unravels the profound significance of these tools in decoding uncertainties within numerical, observational, and calculation-based data. From governmental institutions to private entities, statistical prediction models provide a critical framework for optimal decision-making, offering nuanced insights into diverse realms, from climate to production and beyond. This book ·Serves as a comprehensive resource in statistical modeling, methodologies, and optimization techniques across various domains. ·Features contributions from global authors; the compilation comprises 10 insightful chapters, each addressing critical aspects of estimation and optimization through statistical modeling. ·Covers a spectrum of topics, from non-parametric goodness-of-fit statistics to Bayesian applications; the book explores novel resampling methods, advanced measures for empirical mode, and transient behavior analysis in queueing systems. ·Includes asymptotic properties of goodness-of-fit statistics, practical applications of Bayesian Statistics, modifications to the Hard EM algorithm, and explicit transient probabilities. ·Culminates with an exploration of an inventory model for perishable items, integrating preservation technology and learning effects to determine the economic order quantity. This book stands as a testament to global collaboration, offering a rich tapestry of commendable statistical and mathematical modeling alongside real-world problem-solving. It is poised to ignite further exploration, discussion, and innovation in the realms of statistical modeling and optimization.
Statistical Modeling and Computation
Author: Dirk P. Kroese
Publisher: Springer Science & Business Media
ISBN: 1461487757
Category : Computers
Languages : en
Pages : 412
Book Description
This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.
Publisher: Springer Science & Business Media
ISBN: 1461487757
Category : Computers
Languages : en
Pages : 412
Book Description
This textbook on statistical modeling and statistical inference will assist advanced undergraduate and graduate students. Statistical Modeling and Computation provides a unique introduction to modern Statistics from both classical and Bayesian perspectives. It also offers an integrated treatment of Mathematical Statistics and modern statistical computation, emphasizing statistical modeling, computational techniques, and applications. Each of the three parts will cover topics essential to university courses. Part I covers the fundamentals of probability theory. In Part II, the authors introduce a wide variety of classical models that include, among others, linear regression and ANOVA models. In Part III, the authors address the statistical analysis and computation of various advanced models, such as generalized linear, state-space and Gaussian models. Particular attention is paid to fast Monte Carlo techniques for Bayesian inference on these models. Throughout the book the authors include a large number of illustrative examples and solved problems. The book also features a section with solutions, an appendix that serves as a MATLAB primer, and a mathematical supplement.
Statistical Data Modeling and Machine Learning with Applications
Author: Snezhana Gocheva-Ilieva
Publisher: Mdpi AG
ISBN: 9783036526928
Category : Mathematics
Languages : en
Pages : 184
Book Description
The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section "Mathematics and Computer Science". Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties.
Publisher: Mdpi AG
ISBN: 9783036526928
Category : Mathematics
Languages : en
Pages : 184
Book Description
The modeling and processing of empirical data is one of the main subjects and goals of statistics. Nowadays, with the development of computer science, the extraction of useful and often hidden information and patterns from data sets of different volumes and complex data sets in warehouses has been added to these goals. New and powerful statistical techniques with machine learning (ML) and data mining paradigms have been developed. To one degree or another, all of these techniques and algorithms originate from a rigorous mathematical basis, including probability theory and mathematical statistics, operational research, mathematical analysis, numerical methods, etc. Popular ML methods, such as artificial neural networks (ANN), support vector machines (SVM), decision trees, random forest (RF), among others, have generated models that can be considered as straightforward applications of optimization theory and statistical estimation. The wide arsenal of classical statistical approaches combined with powerful ML techniques allows many challenging and practical problems to be solved. This Special Issue belongs to the section "Mathematics and Computer Science". Its aim is to establish a brief collection of carefully selected papers presenting new and original methods, data analyses, case studies, comparative studies, and other research on the topic of statistical data modeling and ML as well as their applications. Particular attention is given, but is not limited, to theories and applications in diverse areas such as computer science, medicine, engineering, banking, education, sociology, economics, among others. The resulting palette of methods, algorithms, and applications for statistical modeling and ML presented in this Special Issue is expected to contribute to the further development of research in this area. We also believe that the new knowledge acquired here as well as the applied results are attractive and useful for young scientists, doctoral students, and researchers from various scientific specialties.
Convex Optimization in Signal Processing and Communications
Author: Daniel P. Palomar
Publisher: Cambridge University Press
ISBN: 0521762227
Category : Computers
Languages : en
Pages : 513
Book Description
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.
Publisher: Cambridge University Press
ISBN: 0521762227
Category : Computers
Languages : en
Pages : 513
Book Description
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.
Statistical Modeling for Naturalists
Author: Pedro F. Quintana Ascencio
Publisher: Cambridge Scholars Publishing
ISBN: 1527579530
Category : Science
Languages : en
Pages : 210
Book Description
This book will allow naturalists, nature stewards, and graduate students to appreciate and comprehend basic statistical concepts as a bridge to more complex themes relevant to their daily work. Although there are excellent sources on more specialized analytical topics relevant to naturalists, this introductory book makes a connection with the experience and needs of field practitioners. It uses aspects of the natural history of the Florida scrub relevant for conservation and management as examples of analytical issues pertinent to the naturalist in a broader context. Each chapter identifies important ecological questions and then provides approaches to evaluate data, focusing on the analytical decision-making process. The book guides the reader on frequently overlooked aspects such as the understanding of model assumptions, alternative model specifications, model output interpretation, and model limitations.
Publisher: Cambridge Scholars Publishing
ISBN: 1527579530
Category : Science
Languages : en
Pages : 210
Book Description
This book will allow naturalists, nature stewards, and graduate students to appreciate and comprehend basic statistical concepts as a bridge to more complex themes relevant to their daily work. Although there are excellent sources on more specialized analytical topics relevant to naturalists, this introductory book makes a connection with the experience and needs of field practitioners. It uses aspects of the natural history of the Florida scrub relevant for conservation and management as examples of analytical issues pertinent to the naturalist in a broader context. Each chapter identifies important ecological questions and then provides approaches to evaluate data, focusing on the analytical decision-making process. The book guides the reader on frequently overlooked aspects such as the understanding of model assumptions, alternative model specifications, model output interpretation, and model limitations.
Statistical Modeling and Applications on Real-Time Problems
Author: Chandra Shekhar
Publisher:
ISBN: 9781032766034
Category : Mathematics
Languages : en
Pages : 0
Book Description
This comprehensive text offers insights into diverse fields such as engineering, economics, medicine, and agriculture, addressing real-world challenges. It delves into the intricacies of the Lomax distribution under a Type II censoring scheme, exploring various loss functions.
Publisher:
ISBN: 9781032766034
Category : Mathematics
Languages : en
Pages : 0
Book Description
This comprehensive text offers insights into diverse fields such as engineering, economics, medicine, and agriculture, addressing real-world challenges. It delves into the intricacies of the Lomax distribution under a Type II censoring scheme, exploring various loss functions.
Statistical Software Engineering
Author: Panel on Statistical Methods in Software Engineering
Publisher: National Academies Press
ISBN: 0309588545
Category : Computers
Languages : en
Pages : 84
Book Description
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.
Publisher: National Academies Press
ISBN: 0309588545
Category : Computers
Languages : en
Pages : 84
Book Description
This book identifies challenges and opportunities in the development and implementation of software that contain significant statistical content. While emphasizing the relevance of using rigorous statistical and probabilistic techniques in software engineering contexts, it presents opportunities for further research in the statistical sciences and their applications to software engineering. It is intended to motivate and attract new researchers from statistics and the mathematical sciences to attack relevant and pressing problems in the software engineering setting. It describes the "big picture," as this approach provides the context in which statistical methods must be developed. The book's survey nature is directed at the mathematical sciences audience, but software engineers should also find the statistical emphasis refreshing and stimulating. It is hoped that the book will have the effect of seeding the field of statistical software engineering by its indication of opportunities where statistical thinking can help to increase understanding, productivity, and quality of software and software production.
Code Generation for Embedded Convex Optimization
Author: Jacob Elliot Mattingley
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 123
Book Description
Convex optimization is widely used, in many fields, but is nearly always constrained to problems solved in a few minutes or seconds, and even then, nearly always with a human in the loop. The advent of parser-solvers has made convex optimization simpler and more accessible, and greatly increased the number of people using convex optimization. Most current applications, however, are for the design of systems or analysis of data. It is possible to use convex optimization for real-time or embedded applications, where the optimization solver is a part of a larger system. Here, the optimization algorithm must find solutions much faster than a generic solver, and often has a hard, real-time deadline. Use in embedded applications additionally means that the solver cannot fail, and must be robust even in the presence of relatively poor quality data. For ease of embedding, the solver should be simple, and have minimal dependencies on external libraries. Convex optimization has been successfully applied in such settings in the past. However, they have usually necessitated a custom, hand-written solver. This requires signficant time and expertise, and has been a major factor preventing the adoption of convex optimization in embedded applications. This work describes the implementation and use of a prototype code generator for convex optimization, CVXGEN, that creates high-speed solvers automatically. Using the principles of disciplined convex programming, CVXGEN allows the user to describe an optimization problem in a convenient, high-level language, then receive code for compilation into an extremely fast, robust, embeddable solver.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 123
Book Description
Convex optimization is widely used, in many fields, but is nearly always constrained to problems solved in a few minutes or seconds, and even then, nearly always with a human in the loop. The advent of parser-solvers has made convex optimization simpler and more accessible, and greatly increased the number of people using convex optimization. Most current applications, however, are for the design of systems or analysis of data. It is possible to use convex optimization for real-time or embedded applications, where the optimization solver is a part of a larger system. Here, the optimization algorithm must find solutions much faster than a generic solver, and often has a hard, real-time deadline. Use in embedded applications additionally means that the solver cannot fail, and must be robust even in the presence of relatively poor quality data. For ease of embedding, the solver should be simple, and have minimal dependencies on external libraries. Convex optimization has been successfully applied in such settings in the past. However, they have usually necessitated a custom, hand-written solver. This requires signficant time and expertise, and has been a major factor preventing the adoption of convex optimization in embedded applications. This work describes the implementation and use of a prototype code generator for convex optimization, CVXGEN, that creates high-speed solvers automatically. Using the principles of disciplined convex programming, CVXGEN allows the user to describe an optimization problem in a convenient, high-level language, then receive code for compilation into an extremely fast, robust, embeddable solver.
An Introduction to Statistical Modeling of Extreme Values
Author: Stuart Coles
Publisher: Springer Science & Business Media
ISBN: 1447136756
Category : Mathematics
Languages : en
Pages : 219
Book Description
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
Publisher: Springer Science & Business Media
ISBN: 1447136756
Category : Mathematics
Languages : en
Pages : 219
Book Description
Directly oriented towards real practical application, this book develops both the basic theoretical framework of extreme value models and the statistical inferential techniques for using these models in practice. Intended for statisticians and non-statisticians alike, the theoretical treatment is elementary, with heuristics often replacing detailed mathematical proof. Most aspects of extreme modeling techniques are covered, including historical techniques (still widely used) and contemporary techniques based on point process models. A wide range of worked examples, using genuine datasets, illustrate the various modeling procedures and a concluding chapter provides a brief introduction to a number of more advanced topics, including Bayesian inference and spatial extremes. All the computations are carried out using S-PLUS, and the corresponding datasets and functions are available via the Internet for readers to recreate examples for themselves. An essential reference for students and researchers in statistics and disciplines such as engineering, finance and environmental science, this book will also appeal to practitioners looking for practical help in solving real problems. Stuart Coles is Reader in Statistics at the University of Bristol, UK, having previously lectured at the universities of Nottingham and Lancaster. In 1992 he was the first recipient of the Royal Statistical Society's research prize. He has published widely in the statistical literature, principally in the area of extreme value modeling.
Introduction to Probability
Author: Joseph K. Blitzstein
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.
Publisher: CRC Press
ISBN: 1466575573
Category : Mathematics
Languages : en
Pages : 599
Book Description
Developed from celebrated Harvard statistics lectures, Introduction to Probability provides essential language and tools for understanding statistics, randomness, and uncertainty. The book explores a wide variety of applications and examples, ranging from coincidences and paradoxes to Google PageRank and Markov chain Monte Carlo (MCMC). Additional application areas explored include genetics, medicine, computer science, and information theory. The print book version includes a code that provides free access to an eBook version. The authors present the material in an accessible style and motivate concepts using real-world examples. Throughout, they use stories to uncover connections between the fundamental distributions in statistics and conditioning to reduce complicated problems to manageable pieces. The book includes many intuitive explanations, diagrams, and practice problems. Each chapter ends with a section showing how to perform relevant simulations and calculations in R, a free statistical software environment.