Author: Rudolf J. Freund
Publisher: Elsevier
ISBN: 0080498221
Category : Mathematics
Languages : en
Pages : 694
Book Description
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Statistical Methods
Author: Rudolf J. Freund
Publisher: Elsevier
ISBN: 0080498221
Category : Mathematics
Languages : en
Pages : 694
Book Description
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Publisher: Elsevier
ISBN: 0080498221
Category : Mathematics
Languages : en
Pages : 694
Book Description
This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters
Information Hiding
Author: Jessica Fridrich
Publisher: Springer
ISBN: 3540301143
Category : Computers
Languages : en
Pages : 379
Book Description
It is an honor and great pleasure to write a preface for this postproceedings of the 6th International Workshop on Information Hiding. In the past 10 years, the field of data hiding has been maturing and expanding, gradually establishing its place as an active interdisciplinary research area uniquely combining information theory, cryptology, and signal processing. This year, the workshop was followed by the Privacy Enhancing Technologies workshop (PET) hosted at the same location. Delegates viewed this connection as fruitful as it gave both communities a convenient opportunity to interact. We would like to thank all authors who submitted their work for consideration. Out of the 70 submisions received by the program committee, 25 papers were accepted for publication based on their novelty, originality, and scientific merit. We strived to achieve a balanced exposition of papers that would represent many different aspects of information hiding. All papers were divided into eight sessions: digital media watermarking, steganalysis, digital forensics, steganography, software watermarking, security and privacy, anonymity, and data hiding in unusual content. This year, the workshop included a one-hour rump session that offered an opportunity to the delegates to share their work in progress and other brief but interesting contributions.
Publisher: Springer
ISBN: 3540301143
Category : Computers
Languages : en
Pages : 379
Book Description
It is an honor and great pleasure to write a preface for this postproceedings of the 6th International Workshop on Information Hiding. In the past 10 years, the field of data hiding has been maturing and expanding, gradually establishing its place as an active interdisciplinary research area uniquely combining information theory, cryptology, and signal processing. This year, the workshop was followed by the Privacy Enhancing Technologies workshop (PET) hosted at the same location. Delegates viewed this connection as fruitful as it gave both communities a convenient opportunity to interact. We would like to thank all authors who submitted their work for consideration. Out of the 70 submisions received by the program committee, 25 papers were accepted for publication based on their novelty, originality, and scientific merit. We strived to achieve a balanced exposition of papers that would represent many different aspects of information hiding. All papers were divided into eight sessions: digital media watermarking, steganalysis, digital forensics, steganography, software watermarking, security and privacy, anonymity, and data hiding in unusual content. This year, the workshop included a one-hour rump session that offered an opportunity to the delegates to share their work in progress and other brief but interesting contributions.
Computational and Statistical Methods for Analysing Big Data with Applications
Author: Shen Liu
Publisher: Academic Press
ISBN: 0081006519
Category : Mathematics
Languages : en
Pages : 208
Book Description
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Publisher: Academic Press
ISBN: 0081006519
Category : Mathematics
Languages : en
Pages : 208
Book Description
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Computational Statistics
Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 0387981446
Category : Mathematics
Languages : en
Pages : 732
Book Description
Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.
Publisher: Springer Science & Business Media
ISBN: 0387981446
Category : Mathematics
Languages : en
Pages : 732
Book Description
Computational inference is based on an approach to statistical methods that uses modern computational power to simulate distributional properties of estimators and test statistics. This book describes computationally intensive statistical methods in a unified presentation, emphasizing techniques, such as the PDF decomposition, that arise in a wide range of methods.
Computer Age Statistical Inference
Author: Bradley Efron
Publisher: Cambridge University Press
ISBN: 1108107958
Category : Mathematics
Languages : en
Pages : 496
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Publisher: Cambridge University Press
ISBN: 1108107958
Category : Mathematics
Languages : en
Pages : 496
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.
Computer Age Statistical Inference, Student Edition
Author: Bradley Efron
Publisher: Cambridge University Press
ISBN: 1108915876
Category : Mathematics
Languages : en
Pages : 514
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
Publisher: Cambridge University Press
ISBN: 1108915876
Category : Mathematics
Languages : en
Pages : 514
Book Description
The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.
NBS Special Publication
Author:
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 478
Book Description
Publisher:
ISBN:
Category : Weights and measures
Languages : en
Pages : 478
Book Description
U.S. Government Research Reports
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 2180
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 2180
Book Description
Statistical Methods for Speech Recognition
Author: Frederick Jelinek
Publisher: MIT Press
ISBN: 0262546604
Category : Language Arts & Disciplines
Languages : en
Pages : 307
Book Description
This book reflects decades of important research on the mathematical foundations of speech recognition. It focuses on underlying statistical techniques such as hidden Markov models, decision trees, the expectation-maximization algorithm, information theoretic goodness criteria, maximum entropy probability estimation, parameter and data clustering, and smoothing of probability distributions. The author's goal is to present these principles clearly in the simplest setting, to show the advantages of self-organization from real data, and to enable the reader to apply the techniques. Bradford Books imprint
Publisher: MIT Press
ISBN: 0262546604
Category : Language Arts & Disciplines
Languages : en
Pages : 307
Book Description
This book reflects decades of important research on the mathematical foundations of speech recognition. It focuses on underlying statistical techniques such as hidden Markov models, decision trees, the expectation-maximization algorithm, information theoretic goodness criteria, maximum entropy probability estimation, parameter and data clustering, and smoothing of probability distributions. The author's goal is to present these principles clearly in the simplest setting, to show the advantages of self-organization from real data, and to enable the reader to apply the techniques. Bradford Books imprint
An Introduction to Statistical Computing
Author: Jochen Voss
Publisher: John Wiley & Sons
ISBN: 1118728025
Category : Mathematics
Languages : en
Pages : 322
Book Description
A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course.
Publisher: John Wiley & Sons
ISBN: 1118728025
Category : Mathematics
Languages : en
Pages : 322
Book Description
A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced methods such as the reversible jump Markov chain Monte Carlo algorithm and modern methods such as approximate Bayesian computation and multilevel Monte Carlo techniques An Introduction to Statistical Computing: Fully covers the traditional topics of statistical computing. Discusses both practical aspects and the theoretical background. Includes a chapter about continuous-time models. Illustrates all methods using examples and exercises. Provides answers to the exercises (using the statistical computing environment R); the corresponding source code is available online. Includes an introduction to programming in R. This book is mostly self-contained; the only prerequisites are basic knowledge of probability up to the law of large numbers. Careful presentation and examples make this book accessible to a wide range of students and suitable for self-study or as the basis of a taught course.