Statistical Inference from Stochastic Processes

Statistical Inference from Stochastic Processes PDF Author: Narahari Umanath Prabhu
Publisher: American Mathematical Soc.
ISBN: 0821850873
Category : Mathematics
Languages : en
Pages : 406

Get Book Here

Book Description
Comprises the proceedings of the AMS-IMS-SIAM Summer Research Conference on Statistical Inference from Stochastic Processes, held at Cornell University in August 1987. This book provides students and researchers with a familiarity with the foundations of inference from stochastic processes and intends to provide a knowledge of the developments.

Statistical Inference from Stochastic Processes

Statistical Inference from Stochastic Processes PDF Author: Narahari Umanath Prabhu
Publisher: American Mathematical Soc.
ISBN: 0821850873
Category : Mathematics
Languages : en
Pages : 406

Get Book Here

Book Description
Comprises the proceedings of the AMS-IMS-SIAM Summer Research Conference on Statistical Inference from Stochastic Processes, held at Cornell University in August 1987. This book provides students and researchers with a familiarity with the foundations of inference from stochastic processes and intends to provide a knowledge of the developments.

Statistical Inferences for Stochasic Processes

Statistical Inferences for Stochasic Processes PDF Author: Ishwar V. Basawa
Publisher: Academic Press
ISBN:
Category : Mathematics
Languages : en
Pages : 464

Get Book Here

Book Description
Introductory examples of stochastic models; Special models; General theory; Further approaches.

Statistical Inference and Simulation for Spatial Point Processes

Statistical Inference and Simulation for Spatial Point Processes PDF Author: Jesper Moller
Publisher: CRC Press
ISBN: 9780203496930
Category : Mathematics
Languages : en
Pages : 320

Get Book Here

Book Description
Spatial point processes play a fundamental role in spatial statistics and today they are an active area of research with many new applications. Although other published works address different aspects of spatial point processes, most of the classical literature deals only with nonparametric methods, and a thorough treatment of the theory and applications of simulation-based inference is difficult to find. Written by researchers at the top of the field, this book collects and unifies recent theoretical advances and examples of applications. The authors examine Markov chain Monte Carlo algorithms and explore one of the most important recent developments in MCMC: perfect simulation procedures.

Inference in Hidden Markov Models

Inference in Hidden Markov Models PDF Author: Olivier Cappé
Publisher: Springer Science & Business Media
ISBN: 0387289828
Category : Mathematics
Languages : en
Pages : 656

Get Book Here

Book Description
This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Stochastic Epidemic Models with Inference

Stochastic Epidemic Models with Inference PDF Author: Tom Britton
Publisher: Springer Nature
ISBN: 3030309002
Category : Mathematics
Languages : en
Pages : 477

Get Book Here

Book Description
Focussing on stochastic models for the spread of infectious diseases in a human population, this book is the outcome of a two-week ICPAM/CIMPA school on "Stochastic models of epidemics" which took place in Ziguinchor, Senegal, December 5–16, 2015. The text is divided into four parts, each based on one of the courses given at the school: homogeneous models (Tom Britton and Etienne Pardoux), two-level mixing models (David Sirl and Frank Ball), epidemics on graphs (Viet Chi Tran), and statistics for epidemic models (Catherine Larédo). The CIMPA school was aimed at PhD students and Post Docs in the mathematical sciences. Parts (or all) of this book can be used as the basis for traditional or individual reading courses on the topic. For this reason, examples and exercises (some with solutions) are provided throughout.

Bayesian Inference for Stochastic Processes

Bayesian Inference for Stochastic Processes PDF Author: Lyle D. Broemeling
Publisher: CRC Press
ISBN: 1315303574
Category : Mathematics
Languages : en
Pages : 409

Get Book Here

Book Description
This is the first book designed to introduce Bayesian inference procedures for stochastic processes. There are clear advantages to the Bayesian approach (including the optimal use of prior information). Initially, the book begins with a brief review of Bayesian inference and uses many examples relevant to the analysis of stochastic processes, including the four major types, namely those with discrete time and discrete state space and continuous time and continuous state space. The elements necessary to understanding stochastic processes are then introduced, followed by chapters devoted to the Bayesian analysis of such processes. It is important that a chapter devoted to the fundamental concepts in stochastic processes is included. Bayesian inference (estimation, testing hypotheses, and prediction) for discrete time Markov chains, for Markov jump processes, for normal processes (e.g. Brownian motion and the Ornstein–Uhlenbeck process), for traditional time series, and, lastly, for point and spatial processes are described in detail. Heavy emphasis is placed on many examples taken from biology and other scientific disciplines. In order analyses of stochastic processes, it will use R and WinBUGS. Features: Uses the Bayesian approach to make statistical Inferences about stochastic processes The R package is used to simulate realizations from different types of processes Based on realizations from stochastic processes, the WinBUGS package will provide the Bayesian analysis (estimation, testing hypotheses, and prediction) for the unknown parameters of stochastic processes To illustrate the Bayesian inference, many examples taken from biology, economics, and astronomy will reinforce the basic concepts of the subject A practical approach is implemented by considering realistic examples of interest to the scientific community WinBUGS and R code are provided in the text, allowing the reader to easily verify the results of the inferential procedures found in the many examples of the book Readers with a good background in two areas, probability theory and statistical inference, should be able to master the essential ideas of this book.

Statistical Inference for Piecewise-deterministic Markov Processes

Statistical Inference for Piecewise-deterministic Markov Processes PDF Author: Romain Azais
Publisher: John Wiley & Sons
ISBN: 1786303027
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description
Piecewise-deterministic Markov processes form a class of stochastic models with a sizeable scope of applications: biology, insurance, neuroscience, networks, finance... Such processes are defined by a deterministic motion punctuated by random jumps at random times, and offer simple yet challenging models to study. Nevertheless, the issue of statistical estimation of the parameters ruling the jump mechanism is far from trivial. Responding to new developments in the field as well as to current research interests and needs, Statistical inference for piecewise-deterministic Markov processes offers a detailed and comprehensive survey of state-of-the-art results. It covers a wide range of general processes as well as applied models. The present book also dwells on statistics in the context of Markov chains, since piecewise-deterministic Markov processes are characterized by an embedded Markov chain corresponding to the position of the process right after the jumps.

Markov Chain Monte Carlo

Markov Chain Monte Carlo PDF Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264

Get Book Here

Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.

Tools for Statistical Inference

Tools for Statistical Inference PDF Author: Martin A. Tanner
Publisher: Springer Science & Business Media
ISBN: 1468401920
Category : Mathematics
Languages : en
Pages : 166

Get Book Here

Book Description
This book provides a unified introduction to a variety of computational algorithms for likelihood and Bayesian inference. In this second edition, I have attempted to expand the treatment of many of the techniques dis cussed, as well as include important topics such as the Metropolis algorithm and methods for assessing the convergence of a Markov chain algorithm. Prerequisites for this book include an understanding of mathematical statistics at the level of Bickel and Doksum (1977), some understanding of the Bayesian approach as in Box and Tiao (1973), experience with condi tional inference at the level of Cox and Snell (1989) and exposure to statistical models as found in McCullagh and Neider (1989). I have chosen not to present the proofs of convergence or rates of convergence since these proofs may require substantial background in Markov chain theory which is beyond the scope ofthis book. However, references to these proofs are given. There has been an explosion of papers in the area of Markov chain Monte Carlo in the last five years. I have attempted to identify key references - though due to the volatility of the field some work may have been missed.

Statistical Analysis of Stochastic Processes in Time

Statistical Analysis of Stochastic Processes in Time PDF Author: J. K. Lindsey
Publisher: Cambridge University Press
ISBN: 9781139454513
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
This book was first published in 2004. Many observed phenomena, from the changing health of a patient to values on the stock market, are characterised by quantities that vary over time: stochastic processes are designed to study them. This book introduces practical methods of applying stochastic processes to an audience knowledgeable only in basic statistics. It covers almost all aspects of the subject and presents the theory in an easily accessible form that is highlighted by application to many examples. These examples arise from dozens of areas, from sociology through medicine to engineering. Complementing these are exercise sets making the book suited for introductory courses in stochastic processes. Software (available from www.cambridge.org) is provided for the freely available R system for the reader to apply to all the models presented.