Author: Göran Kauermann
Publisher:
ISBN: 9783030698287
Category :
Languages : en
Pages : 0
Book Description
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master's students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Statistical Foundations, Reasoning and Inference
Author: Göran Kauermann
Publisher:
ISBN: 9783030698287
Category :
Languages : en
Pages : 0
Book Description
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master's students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Publisher:
ISBN: 9783030698287
Category :
Languages : en
Pages : 0
Book Description
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master's students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Statistical Foundations, Reasoning and Inference
Author: Göran Kauermann
Publisher: Springer Nature
ISBN: 3030698270
Category : Mathematics
Languages : en
Pages : 361
Book Description
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Publisher: Springer Nature
ISBN: 3030698270
Category : Mathematics
Languages : en
Pages : 361
Book Description
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Statistical Foundations of Data Science
Author: Jianqing Fan
Publisher: CRC Press
ISBN: 0429527616
Category : Mathematics
Languages : en
Pages : 974
Book Description
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Publisher: CRC Press
ISBN: 0429527616
Category : Mathematics
Languages : en
Pages : 974
Book Description
Statistical Foundations of Data Science gives a thorough introduction to commonly used statistical models, contemporary statistical machine learning techniques and algorithms, along with their mathematical insights and statistical theories. It aims to serve as a graduate-level textbook and a research monograph on high-dimensional statistics, sparsity and covariance learning, machine learning, and statistical inference. It includes ample exercises that involve both theoretical studies as well as empirical applications. The book begins with an introduction to the stylized features of big data and their impacts on statistical analysis. It then introduces multiple linear regression and expands the techniques of model building via nonparametric regression and kernel tricks. It provides a comprehensive account on sparsity explorations and model selections for multiple regression, generalized linear models, quantile regression, robust regression, hazards regression, among others. High-dimensional inference is also thoroughly addressed and so is feature screening. The book also provides a comprehensive account on high-dimensional covariance estimation, learning latent factors and hidden structures, as well as their applications to statistical estimation, inference, prediction and machine learning problems. It also introduces thoroughly statistical machine learning theory and methods for classification, clustering, and prediction. These include CART, random forests, boosting, support vector machines, clustering algorithms, sparse PCA, and deep learning.
Statistical Reasoning with Imprecise Probabilities
Author: Peter Walley
Publisher: Chapman and Hall/CRC
ISBN:
Category : Mathematics
Languages : en
Pages : 728
Book Description
An examination of topics involved in statistical reasoning with imprecise probabilities. The book discusses assessment and elicitation, extensions, envelopes and decisions, the importance of imprecision, conditional previsions and coherent statistical models.
Publisher: Chapman and Hall/CRC
ISBN:
Category : Mathematics
Languages : en
Pages : 728
Book Description
An examination of topics involved in statistical reasoning with imprecise probabilities. The book discusses assessment and elicitation, extensions, envelopes and decisions, the importance of imprecision, conditional previsions and coherent statistical models.
Statistical Inference as Severe Testing
Author: Deborah G. Mayo
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Publisher: Cambridge University Press
ISBN: 1108563309
Category : Mathematics
Languages : en
Pages : 503
Book Description
Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.
Modes of Parametric Statistical Inference
Author: Seymour Geisser
Publisher: John Wiley & Sons
ISBN: 0471743127
Category : Mathematics
Languages : en
Pages : 218
Book Description
A fascinating investigation into the foundations of statistical inference This publication examines the distinct philosophical foundations of different statistical modes of parametric inference. Unlike many other texts that focus on methodology and applications, this book focuses on a rather unique combination of theoretical and foundational aspects that underlie the field of statistical inference. Readers gain a deeper understanding of the evolution and underlying logic of each mode as well as each mode's strengths and weaknesses. The book begins with fascinating highlights from the history of statistical inference. Readers are given historical examples of statistical reasoning used to address practical problems that arose throughout the centuries. Next, the book goes on to scrutinize four major modes of statistical inference: * Frequentist * Likelihood * Fiducial * Bayesian The author provides readers with specific examples and counterexamples of situations and datasets where the modes yield both similar and dissimilar results, including a violation of the likelihood principle in which Bayesian and likelihood methods differ from frequentist methods. Each example is followed by a detailed discussion of why the results may have varied from one mode to another, helping the reader to gain a greater understanding of each mode and how it works. Moreover, the author provides considerable mathematical detail on certain points to highlight key aspects of theoretical development. The author's writing style and use of examples make the text clear and engaging. This book is fundamental reading for graduate-level students in statistics as well as anyone with an interest in the foundations of statistics and the principles underlying statistical inference, including students in mathematics and the philosophy of science. Readers with a background in theoretical statistics will find the text both accessible and absorbing.
Publisher: John Wiley & Sons
ISBN: 0471743127
Category : Mathematics
Languages : en
Pages : 218
Book Description
A fascinating investigation into the foundations of statistical inference This publication examines the distinct philosophical foundations of different statistical modes of parametric inference. Unlike many other texts that focus on methodology and applications, this book focuses on a rather unique combination of theoretical and foundational aspects that underlie the field of statistical inference. Readers gain a deeper understanding of the evolution and underlying logic of each mode as well as each mode's strengths and weaknesses. The book begins with fascinating highlights from the history of statistical inference. Readers are given historical examples of statistical reasoning used to address practical problems that arose throughout the centuries. Next, the book goes on to scrutinize four major modes of statistical inference: * Frequentist * Likelihood * Fiducial * Bayesian The author provides readers with specific examples and counterexamples of situations and datasets where the modes yield both similar and dissimilar results, including a violation of the likelihood principle in which Bayesian and likelihood methods differ from frequentist methods. Each example is followed by a detailed discussion of why the results may have varied from one mode to another, helping the reader to gain a greater understanding of each mode and how it works. Moreover, the author provides considerable mathematical detail on certain points to highlight key aspects of theoretical development. The author's writing style and use of examples make the text clear and engaging. This book is fundamental reading for graduate-level students in statistics as well as anyone with an interest in the foundations of statistics and the principles underlying statistical inference, including students in mathematics and the philosophy of science. Readers with a background in theoretical statistics will find the text both accessible and absorbing.
Statistical and Inductive Inference by Minimum Message Length
Author: C.S. Wallace
Publisher: Springer Science & Business Media
ISBN: 9780387237954
Category : Computers
Languages : en
Pages : 456
Book Description
The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.
Publisher: Springer Science & Business Media
ISBN: 9780387237954
Category : Computers
Languages : en
Pages : 456
Book Description
The Minimum Message Length (MML) Principle is an information-theoretic approach to induction, hypothesis testing, model selection, and statistical inference. MML, which provides a formal specification for the implementation of Occam's Razor, asserts that the ‘best’ explanation of observed data is the shortest. Further, an explanation is acceptable (i.e. the induction is justified) only if the explanation is shorter than the original data. This book gives a sound introduction to the Minimum Message Length Principle and its applications, provides the theoretical arguments for the adoption of the principle, and shows the development of certain approximations that assist its practical application. MML appears also to provide both a normative and a descriptive basis for inductive reasoning generally, and scientific induction in particular. The book describes this basis and aims to show its relevance to the Philosophy of Science. Statistical and Inductive Inference by Minimum Message Length will be of special interest to graduate students and researchers in Machine Learning and Data Mining, scientists and analysts in various disciplines wishing to make use of computer techniques for hypothesis discovery, statisticians and econometricians interested in the underlying theory of their discipline, and persons interested in the Philosophy of Science. The book could also be used in a graduate-level course in Machine Learning and Estimation and Model-selection, Econometrics and Data Mining. C.S. Wallace was appointed Foundation Chair of Computer Science at Monash University in 1968, at the age of 35, where he worked until his death in 2004. He received an ACM Fellowship in 1995, and was appointed Professor Emeritus in 1996. Professor Wallace made numerous significant contributions to diverse areas of Computer Science, such as Computer Architecture, Simulation and Machine Learning. His final research focused primarily on the Minimum Message Length Principle.
Foundations and Applications of Statistics
Author: Randall Pruim
Publisher: American Mathematical Soc.
ISBN: 1470428482
Category : Computers
Languages : en
Pages : 842
Book Description
Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Publisher: American Mathematical Soc.
ISBN: 1470428482
Category : Computers
Languages : en
Pages : 842
Book Description
Foundations and Applications of Statistics simultaneously emphasizes both the foundational and the computational aspects of modern statistics. Engaging and accessible, this book is useful to undergraduate students with a wide range of backgrounds and career goals. The exposition immediately begins with statistics, presenting concepts and results from probability along the way. Hypothesis testing is introduced very early, and the motivation for several probability distributions comes from p-value computations. Pruim develops the students' practical statistical reasoning through explicit examples and through numerical and graphical summaries of data that allow intuitive inferences before introducing the formal machinery. The topics have been selected to reflect the current practice in statistics, where computation is an indispensible tool. In this vein, the statistical computing environment R is used throughout the text and is integral to the exposition. Attention is paid to developing students' mathematical and computational skills as well as their statistical reasoning. Linear models, such as regression and ANOVA, are treated with explicit reference to the underlying linear algebra, which is motivated geometrically. Foundations and Applications of Statistics discusses both the mathematical theory underlying statistics and practical applications that make it a powerful tool across disciplines. The book contains ample material for a two-semester course in undergraduate probability and statistics. A one-semester course based on the book will cover hypothesis testing and confidence intervals for the most common situations. In the second edition, the R code has been updated throughout to take advantage of new R packages and to illustrate better coding style. New sections have been added covering bootstrap methods, multinomial and multivariate normal distributions, the delta method, numerical methods for Bayesian inference, and nonlinear least squares. Also, the use of matrix algebra has been expanded, but remains optional, providing instructors with more options regarding the amount of linear algebra required.
Statistical Models and Causal Inference
Author: David A. Freedman
Publisher: Cambridge University Press
ISBN: 0521195004
Category : Mathematics
Languages : en
Pages : 416
Book Description
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.
Publisher: Cambridge University Press
ISBN: 0521195004
Category : Mathematics
Languages : en
Pages : 416
Book Description
David A. Freedman presents a definitive synthesis of his approach to statistical modeling and causal inference in the social sciences.
The Foundations of Statistics
Author: Leonard J. Savage
Publisher: Courier Corporation
ISBN: 0486137104
Category : Mathematics
Languages : en
Pages : 341
Book Description
Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.
Publisher: Courier Corporation
ISBN: 0486137104
Category : Mathematics
Languages : en
Pages : 341
Book Description
Classic analysis of the foundations of statistics and development of personal probability, one of the greatest controversies in modern statistical thought. Revised edition. Calculus, probability, statistics, and Boolean algebra are recommended.