An Introduction to Statistical Concepts

An Introduction to Statistical Concepts PDF Author: Richard G Lomax
Publisher: Routledge
ISBN: 1136490124
Category : Psychology
Languages : en
Pages : 1004

Get Book Here

Book Description
This comprehensive, flexible text is used in both one- and two-semester courses to review introductory through intermediate statistics. Instructors select the topics that are most appropriate for their course. Its conceptual approach helps students more easily understand the concepts and interpret SPSS and research results. Key concepts are simply stated and occasionally reintroduced and related to one another for reinforcement. Numerous examples demonstrate their relevance. This edition features more explanation to increase understanding of the concepts. Only crucial equations are included. In addition to updating throughout, the new edition features: New co-author, Debbie L. Hahs-Vaughn, the 2007 recipient of the University of Central Florida's College of Education Excellence in Graduate Teaching Award. A new chapter on logistic regression models for today's more complex methodologies. More on computing confidence intervals and conducting power analyses using G*Power. Many more SPSS screenshots to assist with understanding how to navigate SPSS and annotated SPSS output to assist in the interpretation of results. Extended sections on how to write-up statistical results in APA format. New learning tools including chapter-opening vignettes, outlines, and a list of key concepts, many more examples, tables, and figures, boxes, and chapter summaries. More tables of assumptions and the effects of their violation including how to test them in SPSS. 33% new conceptual, computational, and all new interpretative problems. A website that features PowerPoint slides, answers to the even-numbered problems, and test items for instructors, and for students the chapter outlines, key concepts, and datasets that can be used in SPSS and other packages, and more. Each chapter begins with an outline, a list of key concepts, and a vignette related to those concepts. Realistic examples from education and the behavioral sciences illustrate those concepts. Each example examines the procedures and assumptions and provides instructions for how to run SPSS, including annotated output, and tips to develop an APA style write-up. Useful tables of assumptions and the effects of their violation are included, along with how to test assumptions in SPSS. 'Stop and Think' boxes provide helpful tips for better understanding the concepts. Each chapter includes computational, conceptual, and interpretive problems. The data sets used in the examples and problems are provided on the web. Answers to the odd-numbered problems are given in the book. The first five chapters review descriptive statistics including ways of representing data graphically, statistical measures, the normal distribution, and probability and sampling. The remainder of the text covers inferential statistics involving means, proportions, variances, and correlations, basic and advanced analysis of variance and regression models. Topics not dealt with in other texts such as robust methods, multiple comparison and nonparametric procedures, and advanced ANOVA and multiple and logistic regression models are also reviewed. Intended for one- or two-semester courses in statistics taught in education and/or the behavioral sciences at the graduate and/or advanced undergraduate level, knowledge of statistics is not a prerequisite. A rudimentary knowledge of algebra is required.

An Introduction to Statistical Concepts

An Introduction to Statistical Concepts PDF Author: Richard G Lomax
Publisher: Routledge
ISBN: 1136490124
Category : Psychology
Languages : en
Pages : 1004

Get Book Here

Book Description
This comprehensive, flexible text is used in both one- and two-semester courses to review introductory through intermediate statistics. Instructors select the topics that are most appropriate for their course. Its conceptual approach helps students more easily understand the concepts and interpret SPSS and research results. Key concepts are simply stated and occasionally reintroduced and related to one another for reinforcement. Numerous examples demonstrate their relevance. This edition features more explanation to increase understanding of the concepts. Only crucial equations are included. In addition to updating throughout, the new edition features: New co-author, Debbie L. Hahs-Vaughn, the 2007 recipient of the University of Central Florida's College of Education Excellence in Graduate Teaching Award. A new chapter on logistic regression models for today's more complex methodologies. More on computing confidence intervals and conducting power analyses using G*Power. Many more SPSS screenshots to assist with understanding how to navigate SPSS and annotated SPSS output to assist in the interpretation of results. Extended sections on how to write-up statistical results in APA format. New learning tools including chapter-opening vignettes, outlines, and a list of key concepts, many more examples, tables, and figures, boxes, and chapter summaries. More tables of assumptions and the effects of their violation including how to test them in SPSS. 33% new conceptual, computational, and all new interpretative problems. A website that features PowerPoint slides, answers to the even-numbered problems, and test items for instructors, and for students the chapter outlines, key concepts, and datasets that can be used in SPSS and other packages, and more. Each chapter begins with an outline, a list of key concepts, and a vignette related to those concepts. Realistic examples from education and the behavioral sciences illustrate those concepts. Each example examines the procedures and assumptions and provides instructions for how to run SPSS, including annotated output, and tips to develop an APA style write-up. Useful tables of assumptions and the effects of their violation are included, along with how to test assumptions in SPSS. 'Stop and Think' boxes provide helpful tips for better understanding the concepts. Each chapter includes computational, conceptual, and interpretive problems. The data sets used in the examples and problems are provided on the web. Answers to the odd-numbered problems are given in the book. The first five chapters review descriptive statistics including ways of representing data graphically, statistical measures, the normal distribution, and probability and sampling. The remainder of the text covers inferential statistics involving means, proportions, variances, and correlations, basic and advanced analysis of variance and regression models. Topics not dealt with in other texts such as robust methods, multiple comparison and nonparametric procedures, and advanced ANOVA and multiple and logistic regression models are also reviewed. Intended for one- or two-semester courses in statistics taught in education and/or the behavioral sciences at the graduate and/or advanced undergraduate level, knowledge of statistics is not a prerequisite. A rudimentary knowledge of algebra is required.

Statistical Concepts - A Second Course

Statistical Concepts - A Second Course PDF Author: Debbie L. Hahs-Vaughn
Publisher: Routledge
ISBN: 113649006X
Category : Psychology
Languages : en
Pages : 534

Get Book Here

Book Description
Statistical Concepts consists of the last 9 chapters of An Introduction to Statistical Concepts, 3rd ed. Designed for the second course in statistics, it is one of the few texts that focuses just on intermediate statistics. The book highlights how statistics work and what they mean to better prepare students to analyze their own data and interpret SPSS and research results. As such it offers more coverage of non-parametric procedures used when standard assumptions are violated since these methods are more frequently encountered when working with real data. Determining appropriate sample sizes is emphasized throughout. Only crucial equations are included. The new edition features: New co-author, Debbie L. Hahs-Vaughn, the 2007 recipient of the University of Central Florida's College of Education Excellence in Graduate Teaching Award. A new chapter on logistic regression models for today's more complex methodologies. Much more on computing confidence intervals and conducting power analyses using G*Power. All new SPSS version 19 screenshots to help navigate through the program and annotated output to assist in the interpretation of results. Sections on how to write-up statistical results in APA format and new templates for writing research questions. New learning tools including chapter-opening vignettes, outlines, a list of key concepts, "Stop and Think" boxes, and many more examples, tables, and figures. More tables of assumptions and the effects of their violation including how to test them in SPSS. 33% new conceptual, computational, and all new interpretative problems. A website with Power Points, answers to the even-numbered problems, detailed solutions to the odd-numbered problems, and test items for instructors, and for students the chapter outlines, key concepts, and datasets. Each chapter begins with an outline, a list of key concepts, and a research vignette related to the concepts. Realistic examples from education and the behavioral sciences illustrate those concepts. Each example examines the procedures and assumptions and provides tips for how to run SPSS and develop an APA style write-up. Tables of assumptions and the effects of their violation are included, along with how to test assumptions in SPSS. Each chapter includes computational, conceptual, and interpretive problems. Answers to the odd-numbered problems are provided. The SPSS data sets that correspond to the book’s examples and problems are available on the web. The book covers basic and advanced analysis of variance models and topics not dealt with in other texts such as robust methods, multiple comparison and non-parametric procedures, and multiple and logistic regression models. Intended for courses in intermediate statistics and/or statistics II taught in education and/or the behavioral sciences, predominantly at the master's or doctoral level. Knowledge of introductory statistics is assumed.

Statistical Methods

Statistical Methods PDF Author: Cheryl Ann Willard
Publisher: Routledge
ISBN: 0429523157
Category : Psychology
Languages : en
Pages : 367

Get Book Here

Book Description
Statistical Methods: An Introduction to Basic Statistical Concepts and Analysis, Second Edition is a textbook designed for students with no prior training in statistics. It provides a solid background of the core statistical concepts taught in most introductory statistics textbooks. Mathematical proofs are deemphasized in favor of careful explanations of statistical constructs. The text begins with coverage of descriptive statistics such as measures of central tendency and variability, then moves on to inferential statistics. Transitional chapters on z-scores, probability, and sampling distributions pave the way to understanding the logic of hypothesis testing and the inferential tests that follow. Hypothesis testing is taught through a four-step process. These same four steps are used throughout the text for the other statistical tests presented including t tests, one- and two-way ANOVAs, chi-square, and correlation. A chapter on nonparametric tests is also provided as an alternative when the requirements cannot be met for parametric tests. Because the same logical framework and sequential steps are used throughout the text, a consistency is provided that allows students to gradually master the concepts. Their learning is enhanced further with the inclusion of "thought questions" and practice problems integrated throughout the chapters. New to the second edition: Chapters on factorial analysis of variance and non-parametric techniques for all data Additional and updated chapter exercises for students to test and demonstrate their learning Full instructor resources: test bank questions, Powerpoint slides, and an Instructor Manual

Probability & Statistical Concepts:an Introduction

Probability & Statistical Concepts:an Introduction PDF Author:
Publisher: Rex Bookstore, Inc.
ISBN: 9789712322228
Category :
Languages : en
Pages : 226

Get Book Here

Book Description


Introductory Statistics

Introductory Statistics PDF Author: Douglas S. Shafer
Publisher:
ISBN: 9781453388945
Category : Mathematical statistics
Languages : en
Pages : 0

Get Book Here

Book Description


Practical Statistics for Data Scientists

Practical Statistics for Data Scientists PDF Author: Peter Bruce
Publisher: "O'Reilly Media, Inc."
ISBN: 1491952911
Category : Computers
Languages : en
Pages : 322

Get Book Here

Book Description
Statistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you’re familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you’ll learn: Why exploratory data analysis is a key preliminary step in data science How random sampling can reduce bias and yield a higher quality dataset, even with big data How the principles of experimental design yield definitive answers to questions How to use regression to estimate outcomes and detect anomalies Key classification techniques for predicting which categories a record belongs to Statistical machine learning methods that “learn” from data Unsupervised learning methods for extracting meaning from unlabeled data

Statistical Concepts and Methods

Statistical Concepts and Methods PDF Author: Gouri K. Bhattacharyya
Publisher: John Wiley & Sons
ISBN:
Category : Mathematics
Languages : en
Pages : 664

Get Book Here

Book Description
This non-mathematical introductory statistics text combines clear explanation of concepts, extensive coverage of useful statistical techniques, and numerous illustrations with data from diverse fields. Throughout, the text emphasizes the assumptions and limitations of statistical methods so that gross abuses can be avoided. It strives to promote correct attitudes and thinking about statistics and its applications. This text should prove an excellent introduction and valuable reference to statistics for students and concerned lay persons.

Investigating Statistical Concepts, Applications and Methods

Investigating Statistical Concepts, Applications and Methods PDF Author: Beth L. Chance
Publisher: Duxbury Press
ISBN: 9780495050643
Category : Mathematics
Languages : en
Pages : 607

Get Book Here

Book Description
INVESTIGATING STATISTICAL CONCEPTS, APPLICATIONS, AND METHODS (WITH CD-ROM) combines investigation and exposition to explore statistical ideas and techniques. Many of the investigations ask you to use technology such as statistical software and Java applets. A combination of practice, homework, and application problems emphasize actual studies.

Statistics on the Table

Statistics on the Table PDF Author: Stephen M. Stigler
Publisher: Harvard University Press
ISBN: 9780674009790
Category : History
Languages : en
Pages : 514

Get Book Here

Book Description
This lively collection of essays examines statistical ideas with an ironic eye for their essence and what their history can tell us for current disputes. The topics range from 17th-century medicine and the circulation of blood, to the cause of the Great Depression, to the determinations of the shape of the Earth and the speed of light.

Statistical Concepts for Criminal Justice and Criminology

Statistical Concepts for Criminal Justice and Criminology PDF Author: Franklin P. Williams
Publisher: Prentice Hall
ISBN: 9780135130469
Category : Law
Languages : en
Pages : 207

Get Book Here

Book Description
This book is concept-based and focuses on the building blocks of statistical ideas. Covering the essential techniques—univariate tools, Chi-square, t-test, analysis of variance, and Pearson's r—in a simple conversational style, the text explains the concepts behind each technique and how results are interpreted. Its emphasis is on understanding over mathematical calculations, and its goal is to give students a grasp of the role of variance and error. A chapter on graphical statistics complements the normal quantitative approaches and each technique is set in the context of how it is used to answer research questions.