Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition

Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition PDF Author: Peter J. Diggle
Publisher: CRC Press
ISBN: 1466560231
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author’s website.

Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition

Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition PDF Author: Peter J. Diggle
Publisher: CRC Press
ISBN: 1466560231
Category : Mathematics
Languages : en
Pages : 302

Get Book Here

Book Description
Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author’s website.

Statistical Analysis of Spatial Point Patterns

Statistical Analysis of Spatial Point Patterns PDF Author: Peter Diggle
Publisher: Hodder Education
ISBN: 9780340740705
Category : Mathematics
Languages : en
Pages : 159

Get Book Here

Book Description
This is a new edition of the classic monograph, published in 1983, that described those statistical methods that are used to analyse spatial data. This edition has been entirely updated with the latest developments in the analysis of spatial data which have grown to become a large area of concern in environmental and epidemiological research. There is a website connected with the volume that contains additional data sets and a new chapter on spatial epidemiology. It is appropriate for graduate level statisticians in various disciplines.

Spatio-Temporal Statistics with R

Spatio-Temporal Statistics with R PDF Author: Christopher K. Wikle
Publisher: CRC Press
ISBN: 0429649789
Category : Mathematics
Languages : en
Pages : 397

Get Book Here

Book Description
The world is becoming increasingly complex, with larger quantities of data available to be analyzed. It so happens that much of these "big data" that are available are spatio-temporal in nature, meaning that they can be indexed by their spatial locations and time stamps. Spatio-Temporal Statistics with R provides an accessible introduction to statistical analysis of spatio-temporal data, with hands-on applications of the statistical methods using R Labs found at the end of each chapter. The book: Gives a step-by-step approach to analyzing spatio-temporal data, starting with visualization, then statistical modelling, with an emphasis on hierarchical statistical models and basis function expansions, and finishing with model evaluation Provides a gradual entry to the methodological aspects of spatio-temporal statistics Provides broad coverage of using R as well as "R Tips" throughout. Features detailed examples and applications in end-of-chapter Labs Features "Technical Notes" throughout to provide additional technical detail where relevant Supplemented by a website featuring the associated R package, data, reviews, errata, a discussion forum, and more The book fills a void in the literature and available software, providing a bridge for students and researchers alike who wish to learn the basics of spatio-temporal statistics. It is written in an informal style and functions as a down-to-earth introduction to the subject. Any reader familiar with calculus-based probability and statistics, and who is comfortable with basic matrix-algebra representations of statistical models, would find this book easy to follow. The goal is to give as many people as possible the tools and confidence to analyze spatio-temporal data.

Handbook of Infectious Disease Data Analysis

Handbook of Infectious Disease Data Analysis PDF Author: Leonhard Held
Publisher: CRC Press
ISBN: 1351839314
Category : Medical
Languages : en
Pages : 472

Get Book Here

Book Description
Recent years have seen an explosion in new kinds of data on infectious diseases, including data on social contacts, whole genome sequences of pathogens, biomarkers for susceptibility to infection, serological panel data, and surveillance data. The Handbook of Infectious Disease Data Analysis provides an overview of many key statistical methods that have been developed in response to such new data streams and the associated ability to address key scientific and epidemiological questions. A unique feature of the Handbook is the wide range of topics covered. Key features Contributors include many leading researchers in the field Divided into four main sections: Basic concepts, Analysis of Outbreak Data, Analysis of Seroprevalence Data, Analysis of Surveillance Data Numerous case studies and examples throughout Provides both introductory material and key reference material

Handbook of Spatial Statistics

Handbook of Spatial Statistics PDF Author: Alan E. Gelfand
Publisher: CRC Press
ISBN: 1420072889
Category : Mathematics
Languages : en
Pages : 622

Get Book Here

Book Description
Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters.The handbook begins with a historical intro

Spatial Point Patterns

Spatial Point Patterns PDF Author: Adrian Baddeley
Publisher: CRC Press
ISBN: 1482210215
Category : Mathematics
Languages : en
Pages : 830

Get Book Here

Book Description
Modern Statistical Methodology and Software for Analyzing Spatial Point PatternsSpatial Point Patterns: Methodology and Applications with R shows scientific researchers and applied statisticians from a wide range of fields how to analyze their spatial point pattern data. Making the techniques accessible to non-mathematicians, the authors draw on th

Design and Analysis of Cross-Over Trials, Third Edition

Design and Analysis of Cross-Over Trials, Third Edition PDF Author: Byron Jones
Publisher: CRC Press
ISBN: 1439861420
Category : Mathematics
Languages : en
Pages : 440

Get Book Here

Book Description
Design and Analysis of Cross-Over Trials is concerned with a specific kind of comparative trial known as the cross-over trial, in which subjects receive different sequences of treatments. Such trials are widely used in clinical and medical research, and in other diverse areas such as veterinary science, psychology, sports science, and agriculture. The first edition of this book was the first to be wholly devoted to the subject. The second edition was revised to mirror growth and development in areas where the design remained in widespread use and new areas where it had grown in importance. This new Third Edition: Contains seven new chapters written in the form of short case studies that address re-estimating sample size when testing for average bioequivalence, fitting a nonlinear dose response function, estimating a dose to take forward from phase two to phase three, establishing proof of concept, and recalculating the sample size using conditional power Employs the R package Crossover, specially created to accompany the book and provide a graphical user interface for locating designs in a large catalog and for searching for new designs Includes updates regarding the use of period baselines and the analysis of data from very small trials Reflects the availability of new procedures in SAS, particularly proc glimmix Presents the SAS procedure proc mcmc as an alternative to WinBUGS for Bayesian analysis Complete with real data and downloadable SAS code, Design and Analysis of Cross-Over Trials, Third Edition provides a practical understanding of the latest methods along with the necessary tools for implementation.

Model-based Geostatistics for Global Public Health

Model-based Geostatistics for Global Public Health PDF Author: Peter J. Diggle
Publisher: CRC Press
ISBN: 1351743260
Category : Mathematics
Languages : en
Pages : 211

Get Book Here

Book Description
Model-based Geostatistics for Global Public Health: Methods and Applications provides an introductory account of model-based geostatistics, its implementation in open-source software and its application in public health research. In the public health problems that are the focus of this book, the authors describe and explain the pattern of spatial variation in a health outcome or exposure measurement of interest. Model-based geostatistics uses explicit probability models and established principles of statistical inference to address questions of this kind. Features: Presents state-of-the-art methods in model-based geostatistics. Discusses the application these methods some of the most challenging global public health problems including disease mapping, exposure mapping and environmental epidemiology. Describes exploratory methods for analysing geostatistical data, including: diagnostic checking of residuals standard linear and generalized linear models; variogram analysis; Gaussian process models and geostatistical design issues. Includes a range of more complex geostatistical problems where research is ongoing. All of the results in the book are reproducible using publicly available R code and data-sets, as well as a dedicated R package. This book has been written to be accessible not only to statisticians but also to students and researchers in the public health sciences. The Authors Peter Diggle is Distinguished University Professor of Statistics in the Faculty of Health and Medicine, Lancaster University. He also holds honorary positions at the Johns Hopkins University School of Public Health, Columbia University International Research Institute for Climate and Society, and Yale University School of Public Health. His research involves the development of statistical methods for analyzing spatial and longitudinal data and their applications in the biomedical and health sciences. Dr Emanuele Giorgi is a Lecturer in Biostatistics and member of the CHICAS research group at Lancaster University, where he formerly obtained a PhD in Statistics and Epidemiology in 2015. His research interests involve the development of novel geostatistical methods for disease mapping, with a special focus on malaria and other tropical diseases. In 2018, Dr Giorgi was awarded the Royal Statistical Society Research Prize "for outstanding published contribution at the interface of statistics and epidemiology." He is also the lead developer of PrevMap, an R package where all the methodology found in this book has been implemented.

State-Space Methods for Time Series Analysis

State-Space Methods for Time Series Analysis PDF Author: Jose Casals
Publisher: CRC Press
ISBN: 1315362600
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
The state-space approach provides a formal framework where any result or procedure developed for a basic model can be seamlessly applied to a standard formulation written in state-space form. Moreover, it can accommodate with a reasonable effort nonstandard situations, such as observation errors, aggregation constraints, or missing in-sample values. Exploring the advantages of this approach, State-Space Methods for Time Series Analysis: Theory, Applications and Software presents many computational procedures that can be applied to a previously specified linear model in state-space form. After discussing the formulation of the state-space model, the book illustrates the flexibility of the state-space representation and covers the main state estimation algorithms: filtering and smoothing. It then shows how to compute the Gaussian likelihood for unknown coefficients in the state-space matrices of a given model before introducing subspace methods and their application. It also discusses signal extraction, describes two algorithms to obtain the VARMAX matrices corresponding to any linear state-space model, and addresses several issues relating to the aggregation and disaggregation of time series. The book concludes with a cross-sectional extension to the classical state-space formulation in order to accommodate longitudinal or panel data. Missing data is a common occurrence here, and the book explains imputation procedures necessary to treat missingness in both exogenous and endogenous variables. Web Resource The authors’ E4 MATLAB® toolbox offers all the computational procedures, administrative and analytical functions, and related materials for time series analysis. This flexible, powerful, and free software tool enables readers to replicate the practical examples in the text and apply the procedures to their own work.

Applied Spatial Data Analysis with R

Applied Spatial Data Analysis with R PDF Author: Roger S. Bivand
Publisher: Springer Science & Business Media
ISBN: 1461476186
Category : Medical
Languages : en
Pages : 414

Get Book Here

Book Description
Applied Spatial Data Analysis with R, second edition, is divided into two basic parts, the first presenting R packages, functions, classes and methods for handling spatial data. This part is of interest to users who need to access and visualise spatial data. Data import and export for many file formats for spatial data are covered in detail, as is the interface between R and the open source GRASS GIS and the handling of spatio-temporal data. The second part showcases more specialised kinds of spatial data analysis, including spatial point pattern analysis, interpolation and geostatistics, areal data analysis and disease mapping. The coverage of methods of spatial data analysis ranges from standard techniques to new developments, and the examples used are largely taken from the spatial statistics literature. All the examples can be run using R contributed packages available from the CRAN website, with code and additional data sets from the book's own website. Compared to the first edition, the second edition covers the more systematic approach towards handling spatial data in R, as well as a number of important and widely used CRAN packages that have appeared since the first edition. This book will be of interest to researchers who intend to use R to handle, visualise, and analyse spatial data. It will also be of interest to spatial data analysts who do not use R, but who are interested in practical aspects of implementing software for spatial data analysis. It is a suitable companion book for introductory spatial statistics courses and for applied methods courses in a wide range of subjects using spatial data, including human and physical geography, geographical information science and geoinformatics, the environmental sciences, ecology, public health and disease control, economics, public administration and political science. The book has a website where complete code examples, data sets, and other support material may be found: http://www.asdar-book.org. The authors have taken part in writing and maintaining software for spatial data handling and analysis with R in concert since 2003.