Author: Rassoul Noorossana
Publisher: John Wiley & Sons
ISBN: 1118071972
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
A one-of-a-kind presentation of the major achievements in statistical profile monitoring methods Statistical profile monitoring is an area of statistical quality control that is growing in significance for researchers and practitioners, specifically because of its range of applicability across various service and manufacturing settings. Comprised of contributions from renowned academicians and practitioners in the field, Statistical Analysis of Profile Monitoring presents the latest state-of-the-art research on the use of control charts to monitor process and product quality profiles. The book presents comprehensive coverage of profile monitoring definitions, techniques, models, and application examples, particularly in various areas of engineering and statistics. The book begins with an introduction to the concept of profile monitoring and its applications in practice. Subsequent chapters explore the fundamental concepts, methods, and issues related to statistical profile monitoring, with topics of coverage including: Simple and multiple linear profiles Binary response profiles Parametric and nonparametric nonlinear profiles Multivariate linear profiles monitoring Statistical process control for geometric specifications Correlation and autocorrelation in profiles Nonparametric profile monitoring Throughout the book, more than two dozen real-world case studies highlight the discussed topics along with innovative examples and applications of profile monitoring. Statistical Analysis of Profile Monitoring is an excellent book for courses on statistical quality control at the graduate level. It also serves as a valuable reference for quality engineers, researchers and anyone who works in monitoring and improving statistical processes.
Statistical Analysis of Profile Monitoring
Author: Rassoul Noorossana
Publisher: John Wiley & Sons
ISBN: 1118071972
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
A one-of-a-kind presentation of the major achievements in statistical profile monitoring methods Statistical profile monitoring is an area of statistical quality control that is growing in significance for researchers and practitioners, specifically because of its range of applicability across various service and manufacturing settings. Comprised of contributions from renowned academicians and practitioners in the field, Statistical Analysis of Profile Monitoring presents the latest state-of-the-art research on the use of control charts to monitor process and product quality profiles. The book presents comprehensive coverage of profile monitoring definitions, techniques, models, and application examples, particularly in various areas of engineering and statistics. The book begins with an introduction to the concept of profile monitoring and its applications in practice. Subsequent chapters explore the fundamental concepts, methods, and issues related to statistical profile monitoring, with topics of coverage including: Simple and multiple linear profiles Binary response profiles Parametric and nonparametric nonlinear profiles Multivariate linear profiles monitoring Statistical process control for geometric specifications Correlation and autocorrelation in profiles Nonparametric profile monitoring Throughout the book, more than two dozen real-world case studies highlight the discussed topics along with innovative examples and applications of profile monitoring. Statistical Analysis of Profile Monitoring is an excellent book for courses on statistical quality control at the graduate level. It also serves as a valuable reference for quality engineers, researchers and anyone who works in monitoring and improving statistical processes.
Publisher: John Wiley & Sons
ISBN: 1118071972
Category : Technology & Engineering
Languages : en
Pages : 298
Book Description
A one-of-a-kind presentation of the major achievements in statistical profile monitoring methods Statistical profile monitoring is an area of statistical quality control that is growing in significance for researchers and practitioners, specifically because of its range of applicability across various service and manufacturing settings. Comprised of contributions from renowned academicians and practitioners in the field, Statistical Analysis of Profile Monitoring presents the latest state-of-the-art research on the use of control charts to monitor process and product quality profiles. The book presents comprehensive coverage of profile monitoring definitions, techniques, models, and application examples, particularly in various areas of engineering and statistics. The book begins with an introduction to the concept of profile monitoring and its applications in practice. Subsequent chapters explore the fundamental concepts, methods, and issues related to statistical profile monitoring, with topics of coverage including: Simple and multiple linear profiles Binary response profiles Parametric and nonparametric nonlinear profiles Multivariate linear profiles monitoring Statistical process control for geometric specifications Correlation and autocorrelation in profiles Nonparametric profile monitoring Throughout the book, more than two dozen real-world case studies highlight the discussed topics along with innovative examples and applications of profile monitoring. Statistical Analysis of Profile Monitoring is an excellent book for courses on statistical quality control at the graduate level. It also serves as a valuable reference for quality engineers, researchers and anyone who works in monitoring and improving statistical processes.
Statistical Methods for Healthcare Performance Monitoring
Author: Alex Bottle
Publisher: CRC Press
ISBN: 1482246104
Category : Mathematics
Languages : en
Pages : 292
Book Description
Healthcare is important to everyone, yet large variations in its quality have been well documented both between and within many countries. With demand and expenditure rising, it’s more crucial than ever to know how well the healthcare system and all its components – from staff member to regional network – are performing. This requires data, which inevitably differ in form and quality. It also requires statistical methods, the output of which needs to be presented so that it can be understood by whoever needs it to make decisions. Statistical Methods for Healthcare Performance Monitoring covers measuring quality, types of data, risk adjustment, defining good and bad performance, statistical monitoring, presenting the results to different audiences and evaluating the monitoring system itself. Using examples from around the world, it brings all the issues and perspectives together in a largely non-technical way for clinicians, managers and methodologists. Statistical Methods for Healthcare Performance Monitoring is aimed at statisticians and researchers who need to know how to measure and compare performance, health service regulators, health service managers with responsibilities for monitoring performance, and quality improvement scientists, including those involved in clinical audits.
Publisher: CRC Press
ISBN: 1482246104
Category : Mathematics
Languages : en
Pages : 292
Book Description
Healthcare is important to everyone, yet large variations in its quality have been well documented both between and within many countries. With demand and expenditure rising, it’s more crucial than ever to know how well the healthcare system and all its components – from staff member to regional network – are performing. This requires data, which inevitably differ in form and quality. It also requires statistical methods, the output of which needs to be presented so that it can be understood by whoever needs it to make decisions. Statistical Methods for Healthcare Performance Monitoring covers measuring quality, types of data, risk adjustment, defining good and bad performance, statistical monitoring, presenting the results to different audiences and evaluating the monitoring system itself. Using examples from around the world, it brings all the issues and perspectives together in a largely non-technical way for clinicians, managers and methodologists. Statistical Methods for Healthcare Performance Monitoring is aimed at statisticians and researchers who need to know how to measure and compare performance, health service regulators, health service managers with responsibilities for monitoring performance, and quality improvement scientists, including those involved in clinical audits.
Statistical Design, Monitoring, and Analysis of Clinical Trials
Author: Weichung Joe Shih
Publisher: CRC Press
ISBN: 9781003176527
Category : Medical
Languages : en
Pages : 380
Book Description
Statistical Design, Monitoring, and Analysis of Clinical Trials, Second Edition concentrates on the biostatistics component of clinical trials. This new edition is updated throughout and includes five new chapters. Developed from the authors' courses taught to public health and medical students, residents, and fellows during the past 20 years, the text shows how biostatistics in clinical trials is an integration of many fundamental scientific principles and statistical methods. The book begins with ethical and safety principles, core trial design concepts, the principles and methods of sample size and power calculation, and analysis of covariance and stratified analysis. It then focuses on sequential designs and methods for two-stage Phase II cancer trials to Phase III group sequential trials, covering monitoring safety, futility, and efficacy. The authors also discuss the development of sample size reestimation and adaptive group sequential procedures, phase 2/3 seamless design and trials with predictive biomarkers, exploit multiple testing procedures, and explain the concept of estimand, intercurrent events, and different missing data processes, and describe how to analyze incomplete data by proper multiple imputations. This text reflects the academic research, commercial development, and public health aspects of clinical trials. It gives students and practitioners a multidisciplinary understanding of the concepts and techniques involved in designing, monitoring, and analyzing various types of trials. The book's balanced set of homework assignments and in-class exercises are appropriate for students and researchers in (bio)statistics, epidemiology, medicine, pharmacy, and public health.
Publisher: CRC Press
ISBN: 9781003176527
Category : Medical
Languages : en
Pages : 380
Book Description
Statistical Design, Monitoring, and Analysis of Clinical Trials, Second Edition concentrates on the biostatistics component of clinical trials. This new edition is updated throughout and includes five new chapters. Developed from the authors' courses taught to public health and medical students, residents, and fellows during the past 20 years, the text shows how biostatistics in clinical trials is an integration of many fundamental scientific principles and statistical methods. The book begins with ethical and safety principles, core trial design concepts, the principles and methods of sample size and power calculation, and analysis of covariance and stratified analysis. It then focuses on sequential designs and methods for two-stage Phase II cancer trials to Phase III group sequential trials, covering monitoring safety, futility, and efficacy. The authors also discuss the development of sample size reestimation and adaptive group sequential procedures, phase 2/3 seamless design and trials with predictive biomarkers, exploit multiple testing procedures, and explain the concept of estimand, intercurrent events, and different missing data processes, and describe how to analyze incomplete data by proper multiple imputations. This text reflects the academic research, commercial development, and public health aspects of clinical trials. It gives students and practitioners a multidisciplinary understanding of the concepts and techniques involved in designing, monitoring, and analyzing various types of trials. The book's balanced set of homework assignments and in-class exercises are appropriate for students and researchers in (bio)statistics, epidemiology, medicine, pharmacy, and public health.
Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches
Author: Fouzi Harrou
Publisher: Elsevier
ISBN: 0128193662
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches – such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches – to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. - Uses a data-driven based approach to fault detection and attribution - Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems - Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods - Includes case studies and comparison of different methods
Publisher: Elsevier
ISBN: 0128193662
Category : Technology & Engineering
Languages : en
Pages : 330
Book Description
Statistical Process Monitoring Using Advanced Data-Driven and Deep Learning Approaches tackles multivariate challenges in process monitoring by merging the advantages of univariate and traditional multivariate techniques to enhance their performance and widen their practical applicability. The book proceeds with merging the desirable properties of shallow learning approaches – such as a one-class support vector machine and k-nearest neighbours and unsupervised deep learning approaches – to develop more sophisticated and efficient monitoring techniques. Finally, the developed approaches are applied to monitor many processes, such as waste-water treatment plants, detection of obstacles in driving environments for autonomous robots and vehicles, robot swarm, chemical processes (continuous stirred tank reactor, plug flow rector, and distillation columns), ozone pollution, road traffic congestion, and solar photovoltaic systems. - Uses a data-driven based approach to fault detection and attribution - Provides an in-depth understanding of fault detection and attribution in complex and multivariate systems - Familiarises you with the most suitable data-driven based techniques including multivariate statistical techniques and deep learning-based methods - Includes case studies and comparison of different methods
Computational and Statistical Methods for Analysing Big Data with Applications
Author: Shen Liu
Publisher: Academic Press
ISBN: 0081006519
Category : Mathematics
Languages : en
Pages : 208
Book Description
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Publisher: Academic Press
ISBN: 0081006519
Category : Mathematics
Languages : en
Pages : 208
Book Description
Due to the scale and complexity of data sets currently being collected in areas such as health, transportation, environmental science, engineering, information technology, business and finance, modern quantitative analysts are seeking improved and appropriate computational and statistical methods to explore, model and draw inferences from big data. This book aims to introduce suitable approaches for such endeavours, providing applications and case studies for the purpose of demonstration. Computational and Statistical Methods for Analysing Big Data with Applications starts with an overview of the era of big data. It then goes onto explain the computational and statistical methods which have been commonly applied in the big data revolution. For each of these methods, an example is provided as a guide to its application. Five case studies are presented next, focusing on computer vision with massive training data, spatial data analysis, advanced experimental design methods for big data, big data in clinical medicine, and analysing data collected from mobile devices, respectively. The book concludes with some final thoughts and suggested areas for future research in big data. - Advanced computational and statistical methodologies for analysing big data are developed - Experimental design methodologies are described and implemented to make the analysis of big data more computationally tractable - Case studies are discussed to demonstrate the implementation of the developed methods - Five high-impact areas of application are studied: computer vision, geosciences, commerce, healthcare and transportation - Computing code/programs are provided where appropriate
Multimodal and Tensor Data Analytics for Industrial Systems Improvement
Author: Nathan Gaw
Publisher: Springer Nature
ISBN: 3031530926
Category :
Languages : en
Pages : 388
Book Description
Publisher: Springer Nature
ISBN: 3031530926
Category :
Languages : en
Pages : 388
Book Description
Introduction to Statistical Process Control
Author: Peihua Qiu
Publisher: CRC Press
ISBN: 1482220415
Category : Business & Economics
Languages : en
Pages : 520
Book Description
A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
Publisher: CRC Press
ISBN: 1482220415
Category : Business & Economics
Languages : en
Pages : 520
Book Description
A major tool for quality control and management, statistical process control (SPC) monitors sequential processes, such as production lines and Internet traffic, to ensure that they work stably and satisfactorily. Along with covering traditional methods, Introduction to Statistical Process Control describes many recent SPC methods that improve upon
Descriptive Analysis in Sensory Evaluation
Author: Sarah E. Kemp
Publisher: John Wiley & Sons
ISBN: 1118991672
Category : Technology & Engineering
Languages : en
Pages : 748
Book Description
A comprehensive review of the techniques and applications of descriptive analysis Sensory evaluation is a scientific discipline used to evoke, measure, analyse and interpret responses to products perceived through the senses of sight, smell, touch, taste and hearing. It is used to reveal insights into the ways in which sensory properties drive consumer acceptance and behaviour, and to design products that best deliver what the consumer wants. Descriptive analysis is one of the most sophisticated, flexible and widely used tools in the field of sensory analysis. It enables objective description of the nature and magnitude of sensory characteristics for use in consumer-driven product design, manufacture and communication. Descriptive Analysis in Sensory Evaluation provides a comprehensive overview of a wide range of traditional and recently-developed descriptive techniques, including history, theory, practical considerations, statistical analysis, applications, case studies and future directions. This important reference, written by academic and industrial sensory scientist, traces the evolution of descriptive analysis, and addresses general considerations, including panel set-up, training, monitoring and performance; psychological factors relevant to assessment; and statistical analysis. Descriptive Analysis in Sensory Evaluation is a valuable resource for sensory professionals working in academia and industry, including sensory scientists, practitioners, trainers and students, and industry-based researchers in quality assurance, research and development, and marketing.
Publisher: John Wiley & Sons
ISBN: 1118991672
Category : Technology & Engineering
Languages : en
Pages : 748
Book Description
A comprehensive review of the techniques and applications of descriptive analysis Sensory evaluation is a scientific discipline used to evoke, measure, analyse and interpret responses to products perceived through the senses of sight, smell, touch, taste and hearing. It is used to reveal insights into the ways in which sensory properties drive consumer acceptance and behaviour, and to design products that best deliver what the consumer wants. Descriptive analysis is one of the most sophisticated, flexible and widely used tools in the field of sensory analysis. It enables objective description of the nature and magnitude of sensory characteristics for use in consumer-driven product design, manufacture and communication. Descriptive Analysis in Sensory Evaluation provides a comprehensive overview of a wide range of traditional and recently-developed descriptive techniques, including history, theory, practical considerations, statistical analysis, applications, case studies and future directions. This important reference, written by academic and industrial sensory scientist, traces the evolution of descriptive analysis, and addresses general considerations, including panel set-up, training, monitoring and performance; psychological factors relevant to assessment; and statistical analysis. Descriptive Analysis in Sensory Evaluation is a valuable resource for sensory professionals working in academia and industry, including sensory scientists, practitioners, trainers and students, and industry-based researchers in quality assurance, research and development, and marketing.
Functional Statistics
Author: Javier Martínez Torres
Publisher: MDPI
ISBN: 3039439634
Category : Mathematics
Languages : en
Pages : 148
Book Description
Functional analysis, the branch that lies between mathematical analysis and statistics, has many applications in the field of engineering and processes. Thus, this book presents several applications carried out from this perspective, as well as various works of a theoretical nature that take a further step so that researchers can use these models with high precision.
Publisher: MDPI
ISBN: 3039439634
Category : Mathematics
Languages : en
Pages : 148
Book Description
Functional analysis, the branch that lies between mathematical analysis and statistics, has many applications in the field of engineering and processes. Thus, this book presents several applications carried out from this perspective, as well as various works of a theoretical nature that take a further step so that researchers can use these models with high precision.
Small Clinical Trials
Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221
Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.
Publisher: National Academies Press
ISBN: 0309171148
Category : Medical
Languages : en
Pages : 221
Book Description
Clinical trials are used to elucidate the most appropriate preventive, diagnostic, or treatment options for individuals with a given medical condition. Perhaps the most essential feature of a clinical trial is that it aims to use results based on a limited sample of research participants to see if the intervention is safe and effective or if it is comparable to a comparison treatment. Sample size is a crucial component of any clinical trial. A trial with a small number of research participants is more prone to variability and carries a considerable risk of failing to demonstrate the effectiveness of a given intervention when one really is present. This may occur in phase I (safety and pharmacologic profiles), II (pilot efficacy evaluation), and III (extensive assessment of safety and efficacy) trials. Although phase I and II studies may have smaller sample sizes, they usually have adequate statistical power, which is the committee's definition of a "large" trial. Sometimes a trial with eight participants may have adequate statistical power, statistical power being the probability of rejecting the null hypothesis when the hypothesis is false. Small Clinical Trials assesses the current methodologies and the appropriate situations for the conduct of clinical trials with small sample sizes. This report assesses the published literature on various strategies such as (1) meta-analysis to combine disparate information from several studies including Bayesian techniques as in the confidence profile method and (2) other alternatives such as assessing therapeutic results in a single treated population (e.g., astronauts) by sequentially measuring whether the intervention is falling above or below a preestablished probability outcome range and meeting predesigned specifications as opposed to incremental improvement.