Author: Norman R. Kurtz
Publisher: Prentice Hall
ISBN:
Category : Business & Economics
Languages : en
Pages : 410
Book Description
People are bombarded with statistical data every day, but not many have had training in how to interpret or analyze this information. Kurtz's accessible writing style provides a basic yet sophisticated introduction to understanding and analyzing statistical applications. The book gives careful attention to the flow of ideas and concepts so there is a stream of logic which flows throughout, adding to the book's readability. The book begins with a discussion of methods for describing the distribution of a variable. The introduction of probability avoids the traditional discussion of the basic laws of probability, providing instead an explanation which can be directly applied in the everyday use of statistical probability. The discussion of the book is focused primarily on the relationship of probability to outcomes. Sociologists, psychologists, social workers, political scientists, educators, as well as anyone who wants to analyze data.
Statistical Analysis for the Social Sciences
Author: Norman R. Kurtz
Publisher: Prentice Hall
ISBN:
Category : Business & Economics
Languages : en
Pages : 410
Book Description
People are bombarded with statistical data every day, but not many have had training in how to interpret or analyze this information. Kurtz's accessible writing style provides a basic yet sophisticated introduction to understanding and analyzing statistical applications. The book gives careful attention to the flow of ideas and concepts so there is a stream of logic which flows throughout, adding to the book's readability. The book begins with a discussion of methods for describing the distribution of a variable. The introduction of probability avoids the traditional discussion of the basic laws of probability, providing instead an explanation which can be directly applied in the everyday use of statistical probability. The discussion of the book is focused primarily on the relationship of probability to outcomes. Sociologists, psychologists, social workers, political scientists, educators, as well as anyone who wants to analyze data.
Publisher: Prentice Hall
ISBN:
Category : Business & Economics
Languages : en
Pages : 410
Book Description
People are bombarded with statistical data every day, but not many have had training in how to interpret or analyze this information. Kurtz's accessible writing style provides a basic yet sophisticated introduction to understanding and analyzing statistical applications. The book gives careful attention to the flow of ideas and concepts so there is a stream of logic which flows throughout, adding to the book's readability. The book begins with a discussion of methods for describing the distribution of a variable. The introduction of probability avoids the traditional discussion of the basic laws of probability, providing instead an explanation which can be directly applied in the everyday use of statistical probability. The discussion of the book is focused primarily on the relationship of probability to outcomes. Sociologists, psychologists, social workers, political scientists, educators, as well as anyone who wants to analyze data.
Data Analysis for Social Science
Author: Elena Llaudet
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Publisher: Princeton University Press
ISBN: 0691199434
Category : Computers
Languages : en
Pages : 256
Book Description
"Data analysis has become a necessary skill across the social sciences, and recent advancements in computing power have made knowledge of programming an essential component. Yet most data science books are intimidating and overwhelming to a non-specialist audience, including most undergraduates. This book will be a shorter, more focused and accessible version of Kosuke Imai's Quantitative Social Science book, which was published by Princeton in 2018 and has been adopted widely in graduate level courses of the same title. This book uses the same innovative approach as Quantitative Social Science , using real data and 'R' to answer a wide range of social science questions. It assumes no prior knowledge of statistics or coding. It starts with straightforward, simple data analysis and culminates with multivariate linear regression models, focusing more on the intuition of how the math works rather than the math itself. The book makes extensive use of data visualizations, diagrams, pictures, cartoons, etc., to help students understand and recall complex concepts, provides an easy to follow, step-by-step template of how to conduct data analysis from beginning to end, and will be accompanied by supplemental materials in the appendix and online for both students and instructors"--
Statistical Methods for the Social Sciences
Author: Alan Agresti
Publisher:
ISBN: 9781292021669
Category : Business & Economics
Languages : en
Pages : 576
Book Description
The fourth edition has an even stronger emphasis on concepts and applications, with greater attention to "real data" both in the examples and exercises. The mathematics is still downplayed, in particular probability, which is all too often a stumbling block for students. On the other hand, the text is not a cookbook. Reliance on an overly simplistic recipe-based approach to statistics is not the route to good statistical practice. Changes in the Fourth Edition: Since the first edition, the increase in computer power coupled with the continued improvement and accessibility of statistical software has had a major impact on the way social scientists analyze data. Because of this, this book does not cover the traditional shortcut hand-computational formulas and approximations. The presentation of computationally complex methods, such as regression, emphasizes interpretation of software output rather than the formulas for performing the analysis. Teh text contains numerous sample printouts, mainly in the style of SPSS and occasionaly SAS, both in chapter text and homework problems. This edition also has an appendix explaining how to apply SPSS and SAS to conduct the methods of each chapter and a website giving links to information about other software.
Publisher:
ISBN: 9781292021669
Category : Business & Economics
Languages : en
Pages : 576
Book Description
The fourth edition has an even stronger emphasis on concepts and applications, with greater attention to "real data" both in the examples and exercises. The mathematics is still downplayed, in particular probability, which is all too often a stumbling block for students. On the other hand, the text is not a cookbook. Reliance on an overly simplistic recipe-based approach to statistics is not the route to good statistical practice. Changes in the Fourth Edition: Since the first edition, the increase in computer power coupled with the continued improvement and accessibility of statistical software has had a major impact on the way social scientists analyze data. Because of this, this book does not cover the traditional shortcut hand-computational formulas and approximations. The presentation of computationally complex methods, such as regression, emphasizes interpretation of software output rather than the formulas for performing the analysis. Teh text contains numerous sample printouts, mainly in the style of SPSS and occasionaly SAS, both in chapter text and homework problems. This edition also has an appendix explaining how to apply SPSS and SAS to conduct the methods of each chapter and a website giving links to information about other software.
Using Statistical Methods in Social Science Research
Author: Soleman H. Abu-Bader
Publisher: Oxford University Press
ISBN: 0190685352
Category : Social Science
Languages : en
Pages : 395
Book Description
In Using Statistical Methods, Soleman Abu-Bader detects and addresses the gaps between the research and data analysis of the classroom environment and the practitioner's office. This book not only guides social scientists through different tests, but also provides students and researchers alike with information that will help them in their own practice. With focus on the purpose, rationale, and assumptions made by each statistical test, and a plethora of research examples that clearly display their applicability and function in real-world practice, Professor Abu-Bader creates a step-by-step description of the process needed to clearly organize, choose a test or statistical technique, analyze, interpret, and report research findings.
Publisher: Oxford University Press
ISBN: 0190685352
Category : Social Science
Languages : en
Pages : 395
Book Description
In Using Statistical Methods, Soleman Abu-Bader detects and addresses the gaps between the research and data analysis of the classroom environment and the practitioner's office. This book not only guides social scientists through different tests, but also provides students and researchers alike with information that will help them in their own practice. With focus on the purpose, rationale, and assumptions made by each statistical test, and a plethora of research examples that clearly display their applicability and function in real-world practice, Professor Abu-Bader creates a step-by-step description of the process needed to clearly organize, choose a test or statistical technique, analyze, interpret, and report research findings.
Statistics for the Social Sciences
Author: Russell T. Warne
Publisher: Cambridge University Press
ISBN: 1108548849
Category : Psychology
Languages : en
Pages : 600
Book Description
Written by a quantitative psychologist, this textbook explains complex statistics in accessible language to undergraduates in all branches of the social sciences. Built around the central framework of the General Linear Model (GLM), Statistics for the Social Sciences teaches students how different statistical methods are interrelated to one another. With the GLM as a basis, students with varying levels of background are better equipped to interpret statistics and learn more advanced methods in their later courses. Russell Warne makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this book will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice and reflection questions.
Publisher: Cambridge University Press
ISBN: 1108548849
Category : Psychology
Languages : en
Pages : 600
Book Description
Written by a quantitative psychologist, this textbook explains complex statistics in accessible language to undergraduates in all branches of the social sciences. Built around the central framework of the General Linear Model (GLM), Statistics for the Social Sciences teaches students how different statistical methods are interrelated to one another. With the GLM as a basis, students with varying levels of background are better equipped to interpret statistics and learn more advanced methods in their later courses. Russell Warne makes statistics relevant to students' varying majors by using fascinating real-life examples from the social sciences. Students who use this book will benefit from clear explanations, warnings against common erroneous beliefs about statistics, and the latest developments in the philosophy, reporting and practice of statistics in the social sciences. The textbook is packed with helpful pedagogical features including learning goals, guided practice and reflection questions.
Using R for Data Analysis in Social Sciences
Author: Quan Li
Publisher: Oxford University Press
ISBN: 0190656247
Category : Political Science
Languages : en
Pages : 369
Book Description
Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.
Publisher: Oxford University Press
ISBN: 0190656247
Category : Political Science
Languages : en
Pages : 369
Book Description
Statistical analysis is common in the social sciences, and among the more popular programs is R. This book provides a foundation for undergraduate and graduate students in the social sciences on how to use R to manage, visualize, and analyze data. The focus is on how to address substantive questions with data analysis and replicate published findings. Using R for Data Analysis in Social Sciences adopts a minimalist approach and covers only the most important functions and skills in R to conduct reproducible research. It emphasizes the practical needs of students using R by showing how to import, inspect, and manage data, understand the logic of statistical inference, visualize data and findings via histograms, boxplots, scatterplots, and diagnostic plots, and analyze data using one-sample t-test, difference-of-means test, covariance, correlation, ordinary least squares (OLS) regression, and model assumption diagnostics. It also demonstrates how to replicate the findings in published journal articles and diagnose model assumption violations. Because the book integrates R programming, the logic and steps of statistical inference, and the process of empirical social scientific research in a highly accessible and structured fashion, it is appropriate for any introductory course on R, data analysis, and empirical social-scientific research.
Quantitative Social Science
Author: Kosuke Imai
Publisher: Princeton University Press
ISBN: 0691191093
Category : Political Science
Languages : en
Pages : 464
Book Description
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Publisher: Princeton University Press
ISBN: 0691191093
Category : Political Science
Languages : en
Pages : 464
Book Description
"Princeton University Press published Imai's textbook, Quantitative Social Science: An Introduction, an introduction to quantitative methods and data science for upper level undergrads and graduates in professional programs, in February 2017. What is distinct about the book is how it leads students through a series of applied examples of statistical methods, drawing on real examples from social science research. The original book was prepared with the statistical software R, which is freely available online and has gained in popularity in recent years. But many existing courses in statistics and data sciences, particularly in some subject areas like sociology and law, use STATA, another general purpose package that has been the market leader since the 1980s. We've had several requests for STATA versions of the text as many programs use it by default. This is a "translation" of the original text, keeping all the current pedagogical text but inserting the necessary code and outputs from STATA in their place"--
Statistical Power Analysis for the Social and Behavioral Sciences
Author: Xiaofeng Steven Liu
Publisher: Routledge
ISBN: 1136464182
Category : Psychology
Languages : en
Pages : 285
Book Description
This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
Publisher: Routledge
ISBN: 1136464182
Category : Psychology
Languages : en
Pages : 285
Book Description
This is the first book to demonstrate the application of power analysis to the newer more advanced statistical techniques that are increasingly used in the social and behavioral sciences. Both basic and advanced designs are covered. Readers are shown how to apply power analysis to techniques such as hierarchical linear modeling, meta-analysis, and structural equation modeling. Each chapter opens with a review of the statistical procedure and then proceeds to derive the power functions. This is followed by examples that demonstrate how to produce power tables and charts. The book clearly shows how to calculate power by providing open code for every design and procedure in R, SAS, and SPSS. Readers can verify the power computation using the computer programs on the book's website. There is a growing requirement to include power analysis to justify sample sizes in grant proposals. Most chapters are self-standing and can be read in any order without much disruption.This book will help readers do just that. Sample computer code in R, SPSS, and SAS at www.routledge.com/9781848729810 are written to tabulate power values and produce power curves that can be included in a grant proposal. Organized according to various techniques, chapters 1 – 3 introduce the basics of statistical power and sample size issues including the historical origin, hypothesis testing, and the use of statistical power in t tests and confidence intervals. Chapters 4 - 6 cover common statistical procedures -- analysis of variance, linear regression (both simple regression and multiple regression), correlation, analysis of covariance, and multivariate analysis. Chapters 7 - 11 review the new statistical procedures -- multi-level models, meta-analysis, structural equation models, and longitudinal studies. The appendixes contain a tutorial about R and show the statistical theory of power analysis. Intended as a supplement for graduate courses on quantitative methods, multivariate statistics, hierarchical linear modeling (HLM) and/or multilevel modeling and SEM taught in psychology, education, human development, nursing, and social and life sciences, this is the first text on statistical power for advanced procedures. Researchers and practitioners in these fields also appreciate the book‘s unique coverage of the use of statistical power analysis to determine sample size in planning a study. A prerequisite of basic through multivariate statistics is assumed.
Statistical Methods in Social Science Research
Author: S P Mukherjee
Publisher: Springer
ISBN: 9811321469
Category : Social Science
Languages : en
Pages : 158
Book Description
This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
Publisher: Springer
ISBN: 9811321469
Category : Social Science
Languages : en
Pages : 158
Book Description
This book presents various recently developed and traditional statistical techniques, which are increasingly being applied in social science research. The social sciences cover diverse phenomena arising in society, the economy and the environment, some of which are too complex to allow concrete statements; some cannot be defined by direct observations or measurements; some are culture- (or region-) specific, while others are generic and common. Statistics, being a scientific method – as distinct from a ‘science’ related to any one type of phenomena – is used to make inductive inferences regarding various phenomena. The book addresses both qualitative and quantitative research (a combination of which is essential in social science research) and offers valuable supplementary reading at an advanced level for researchers.
Text Analysis for the Social Sciences
Author: Carl W. Roberts
Publisher: Routledge
ISBN: 1000149242
Category : Language Arts & Disciplines
Languages : en
Pages : 312
Book Description
This book provides descriptions and illustrations of cutting-edge text analysis methods for communication and marketing research; cultural, historical-comparative, and event analysis; curriculum evaluation; psychological diagnosis; language development research; and for any research in which statistical inferences are drawn from samples of texts. Although the book is accessible to readers having no experience with content analysis, the text analysis expert will find substantial new material in its pages. In particular, this collection describes developments in semantic and network text analysis methodologies that heretofore have been accessible only among a smattering of methodology journals. The book's international and cross-disciplinary content illustrates the breadth of quantitative text analysis applications. These applications demonstrate the methods' utility for international research, as well as for practitioners from the fields of sociology, political science, journalism/communication, computer science, marketing, education, and English. This is an "ecumenical" collection that contains applications not only of the most recent semantic and network text analysis methods, but also of the more traditional thematic method of text analysis. In fact, it is originally with this volume that these two "relational" approaches to text analysis are defined and contrasted with more traditional "thematic" text analysis methods. The emphasis here is on application. The book's chapters provide guidance regarding the sorts of inferences that each method affords, and up-to-date descriptions of the human and technological resources required to apply the methods. Its purpose is as a resource for making quantitative text analysis methods more accessible to social science researchers.
Publisher: Routledge
ISBN: 1000149242
Category : Language Arts & Disciplines
Languages : en
Pages : 312
Book Description
This book provides descriptions and illustrations of cutting-edge text analysis methods for communication and marketing research; cultural, historical-comparative, and event analysis; curriculum evaluation; psychological diagnosis; language development research; and for any research in which statistical inferences are drawn from samples of texts. Although the book is accessible to readers having no experience with content analysis, the text analysis expert will find substantial new material in its pages. In particular, this collection describes developments in semantic and network text analysis methodologies that heretofore have been accessible only among a smattering of methodology journals. The book's international and cross-disciplinary content illustrates the breadth of quantitative text analysis applications. These applications demonstrate the methods' utility for international research, as well as for practitioners from the fields of sociology, political science, journalism/communication, computer science, marketing, education, and English. This is an "ecumenical" collection that contains applications not only of the most recent semantic and network text analysis methods, but also of the more traditional thematic method of text analysis. In fact, it is originally with this volume that these two "relational" approaches to text analysis are defined and contrasted with more traditional "thematic" text analysis methods. The emphasis here is on application. The book's chapters provide guidance regarding the sorts of inferences that each method affords, and up-to-date descriptions of the human and technological resources required to apply the methods. Its purpose is as a resource for making quantitative text analysis methods more accessible to social science researchers.