Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Stratospheric Flight
Author: Andras Sóbester
Publisher: Springer Science & Business Media
ISBN: 1441994580
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
In this book, Dr. Andras Sobester reviews the science behind high altitude flight. He takes the reader on a journey that begins with the complex physiological questions involved in taking humans into the "death zone." How does the body react to falling ambient pressure? Why is hypoxia (oxygen deficiency associated with low air pressure) so dangerous and why is it so difficult to 'design out' of aircraft, why does it still cause fatalities in the 21st century? What cabin pressures are air passengers and military pilots exposed to and why is the choice of an appropriate range of values such a difficult problem? How do high altitude life support systems work and what happens if they fail? What happens if cabin pressure is lost suddenly or, even worse, slowly and unnoticed? The second part of the book tackles the aeronautical problems of flying in the upper atmosphere. What loads does stratospheric flight place on pressurized cabins at high altitude and why are these difficult to predict? What determines the maximum altitude an aircraft can climb to? What is the 'coffin corner' and how can it be avoided? The history of aviation has seen a handful of airplanes reach altitudes in excess of 70,000 feet - what are the extreme engineering challenges of climbing into the upper stratosphere? Flying high makes very high speeds possible -- what are the practical limits? The key advantage of stratospheric flight is that the aircraft will be 'above the weather' - but is this always the case? Part three of the book investigates the extreme atmospheric conditions that may be encountered in the upper atmosphere. How high can a storm cell reach and what is it like to fly into one? How frequent is high altitude 'clear air' turbulence, what causes it and what are its effects on aircraft? The stratosphere can be extremely cold - how cold does it have to be before flight becomes unsafe? What happens when an aircraft encounters volcanic ash at high altitude? Very high winds can be encountered at the lower boundary of the stratosphere - what effect do they have on aviation? Finally, part four looks at the extreme limits of stratospheric flight. How high will a winged aircraft will ever be able to fly? What are the ultimate altitude limits of ballooning? What is the greatest altitude that you could still bail out from? And finally, what are the challenges of exploring the stratospheres of other planets and moons? The author discusses these and many other questions, the known knowns, the known unkonwns and the potential unknown unknowns of stratospheric flight through a series of notable moments of the recent history of mankind's forays into the upper atmospheres, each of these incidents, accidents or great triumphs illustrating a key aspect of what makes stratospheric flight aviation at the limit.
Publisher: Springer Science & Business Media
ISBN: 1441994580
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
In this book, Dr. Andras Sobester reviews the science behind high altitude flight. He takes the reader on a journey that begins with the complex physiological questions involved in taking humans into the "death zone." How does the body react to falling ambient pressure? Why is hypoxia (oxygen deficiency associated with low air pressure) so dangerous and why is it so difficult to 'design out' of aircraft, why does it still cause fatalities in the 21st century? What cabin pressures are air passengers and military pilots exposed to and why is the choice of an appropriate range of values such a difficult problem? How do high altitude life support systems work and what happens if they fail? What happens if cabin pressure is lost suddenly or, even worse, slowly and unnoticed? The second part of the book tackles the aeronautical problems of flying in the upper atmosphere. What loads does stratospheric flight place on pressurized cabins at high altitude and why are these difficult to predict? What determines the maximum altitude an aircraft can climb to? What is the 'coffin corner' and how can it be avoided? The history of aviation has seen a handful of airplanes reach altitudes in excess of 70,000 feet - what are the extreme engineering challenges of climbing into the upper stratosphere? Flying high makes very high speeds possible -- what are the practical limits? The key advantage of stratospheric flight is that the aircraft will be 'above the weather' - but is this always the case? Part three of the book investigates the extreme atmospheric conditions that may be encountered in the upper atmosphere. How high can a storm cell reach and what is it like to fly into one? How frequent is high altitude 'clear air' turbulence, what causes it and what are its effects on aircraft? The stratosphere can be extremely cold - how cold does it have to be before flight becomes unsafe? What happens when an aircraft encounters volcanic ash at high altitude? Very high winds can be encountered at the lower boundary of the stratosphere - what effect do they have on aviation? Finally, part four looks at the extreme limits of stratospheric flight. How high will a winged aircraft will ever be able to fly? What are the ultimate altitude limits of ballooning? What is the greatest altitude that you could still bail out from? And finally, what are the challenges of exploring the stratospheres of other planets and moons? The author discusses these and many other questions, the known knowns, the known unkonwns and the potential unknown unknowns of stratospheric flight through a series of notable moments of the recent history of mankind's forays into the upper atmospheres, each of these incidents, accidents or great triumphs illustrating a key aspect of what makes stratospheric flight aviation at the limit.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 456
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 456
Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
Nickel and Its Alloys
Author: Samuel Jacob Rosenberg
Publisher:
ISBN:
Category : Nickel
Languages : en
Pages : 164
Book Description
Publisher:
ISBN:
Category : Nickel
Languages : en
Pages : 164
Book Description
A Handbook on Torsional Vibration
Author: British Internal Combustion Engine Research Association
Publisher: Cambridge University Press
ISBN: 0521043263
Category : Science
Languages : en
Pages : 695
Book Description
This 1958 book was primarily written to provide information on torsional vibration for the design and development departments of engineering companies, although it was also intended to serve students of the subject. It will be of value to anyone with an interest in torsional vibration and the development of engineering practice.
Publisher: Cambridge University Press
ISBN: 0521043263
Category : Science
Languages : en
Pages : 695
Book Description
This 1958 book was primarily written to provide information on torsional vibration for the design and development departments of engineering companies, although it was also intended to serve students of the subject. It will be of value to anyone with an interest in torsional vibration and the development of engineering practice.
Mechanical Design Engineering Handbook
Author: Peter Childs
Publisher: Butterworth-Heinemann
ISBN: 0080982832
Category : Technology & Engineering
Languages : en
Pages : 839
Book Description
Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum of common mechanical and machine components that act as building blocks in the design of mechanical devices, Mechanical Design Engineering Handbook also includes worked design scenarios and essential background on design methodology to help you get started with a problem and repeat selection processes with successful results time and time again. This practical handbook will make an ideal shelf reference for those working in mechanical design across a variety of industries and a valuable learning resource for advanced students undertaking engineering design modules and projects as part of broader mechanical, aerospace, automotive and manufacturing programs. - Clear, concise text explains key component technology, with step-by-step procedures, fully worked design scenarios, component images and cross-sectional line drawings all incorporated for ease of understanding - Provides essential data, equations and interactive ancillaries, including calculation spreadsheets, to inform decision making, design evaluation and incorporation of components into overall designs - Design procedures and methods covered include references to national and international standards where appropriate
Publisher: Butterworth-Heinemann
ISBN: 0080982832
Category : Technology & Engineering
Languages : en
Pages : 839
Book Description
Mechanical Design Engineering Handbook is a straight-talking and forward-thinking reference covering the design, specification, selection, use and integration of machine elements fundamental to a wide range of engineering applications. Develop or refresh your mechanical design skills in the areas of bearings, shafts, gears, seals, belts and chains, clutches and brakes, springs, fasteners, pneumatics and hydraulics, amongst other core mechanical elements, and dip in for principles, data and calculations as needed to inform and evaluate your on-the-job decisions. Covering the full spectrum of common mechanical and machine components that act as building blocks in the design of mechanical devices, Mechanical Design Engineering Handbook also includes worked design scenarios and essential background on design methodology to help you get started with a problem and repeat selection processes with successful results time and time again. This practical handbook will make an ideal shelf reference for those working in mechanical design across a variety of industries and a valuable learning resource for advanced students undertaking engineering design modules and projects as part of broader mechanical, aerospace, automotive and manufacturing programs. - Clear, concise text explains key component technology, with step-by-step procedures, fully worked design scenarios, component images and cross-sectional line drawings all incorporated for ease of understanding - Provides essential data, equations and interactive ancillaries, including calculation spreadsheets, to inform decision making, design evaluation and incorporation of components into overall designs - Design procedures and methods covered include references to national and international standards where appropriate
NASA SP.
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 314
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 314
Book Description
Analysis and Design of Flight Vehicle Structures
Author: Elmer Franklin Bruhn
Publisher:
ISBN:
Category : Aeroelasticity
Languages : en
Pages : 1008
Book Description
Publisher:
ISBN:
Category : Aeroelasticity
Languages : en
Pages : 1008
Book Description
Problems of Designing Passenger Aircraft
Author: Viktor Mikhaĭlovich Sheĭnin
Publisher:
ISBN:
Category : Jet transports
Languages : en
Pages : 312
Book Description
Publisher:
ISBN:
Category : Jet transports
Languages : en
Pages : 312
Book Description
FUNDAMENTALS OF COMPRESSIBLE FLUID DYNAMICS
Author: P. BALACHANDRAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120328570
Category : Science
Languages : en
Pages : 604
Book Description
Compressible Fluid Dynamics (or Gas Dynamics) has a wide range of applications in Mechanical, Aeronautical and Chemical Engineering.It plays a significant role in the design and development of compressors, turbines, missiles, rockets and aircrafts. This comprehensive and systematically organized book gives a clear analysis of the fundamental principles of Compressible Fluid Dynamics. It discusses in rich detail such topics as isentropic, Fanno, Rayleigh, simple and generalised one-dimensional flows. Besides, it covers topics such as conservation laws for compressible flow, normal and oblique shock waves, and measurement in compressible flow. Finally, the book concludes with detailed discussions on propulsive devices. The text is amply illustrated with worked-out examples, tables and diagrams to enable the students to comprehend the subject with ease. Intended as a text for undergraduate students of Mechanical, Aeronautical and Chemical Engineering, the book would also be extremely useful for practising engineers.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120328570
Category : Science
Languages : en
Pages : 604
Book Description
Compressible Fluid Dynamics (or Gas Dynamics) has a wide range of applications in Mechanical, Aeronautical and Chemical Engineering.It plays a significant role in the design and development of compressors, turbines, missiles, rockets and aircrafts. This comprehensive and systematically organized book gives a clear analysis of the fundamental principles of Compressible Fluid Dynamics. It discusses in rich detail such topics as isentropic, Fanno, Rayleigh, simple and generalised one-dimensional flows. Besides, it covers topics such as conservation laws for compressible flow, normal and oblique shock waves, and measurement in compressible flow. Finally, the book concludes with detailed discussions on propulsive devices. The text is amply illustrated with worked-out examples, tables and diagrams to enable the students to comprehend the subject with ease. Intended as a text for undergraduate students of Mechanical, Aeronautical and Chemical Engineering, the book would also be extremely useful for practising engineers.