Stability Theory of Dynamical Systems

Stability Theory of Dynamical Systems PDF Author: N.P. Bhatia
Publisher: Springer Science & Business Media
ISBN: 9783540427483
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
Reprint of classic reference work. Over 400 books have been published in the series Classics in Mathematics, many remain standard references for their subject. All books in this series are reissued in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. "... The book has many good points: clear organization, historical notes and references at the end of every chapter, and an excellent bibliography. The text is well-written, at a level appropriate for the intended audience, and it represents a very good introduction to the basic theory of dynamical systems."

Stability Theory of Dynamical Systems

Stability Theory of Dynamical Systems PDF Author: N.P. Bhatia
Publisher: Springer Science & Business Media
ISBN: 9783540427483
Category : Science
Languages : en
Pages : 252

Get Book Here

Book Description
Reprint of classic reference work. Over 400 books have been published in the series Classics in Mathematics, many remain standard references for their subject. All books in this series are reissued in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. "... The book has many good points: clear organization, historical notes and references at the end of every chapter, and an excellent bibliography. The text is well-written, at a level appropriate for the intended audience, and it represents a very good introduction to the basic theory of dynamical systems."

Stability Theory of Switched Dynamical Systems

Stability Theory of Switched Dynamical Systems PDF Author: Zhendong Sun
Publisher: Springer Science & Business Media
ISBN: 0857292560
Category : Technology & Engineering
Languages : en
Pages : 266

Get Book Here

Book Description
There are plenty of challenging and interesting problems open for investigation in the field of switched systems. Stability issues help to generate many complex nonlinear dynamic behaviors within switched systems. The authors present a thorough investigation of stability effects on three broad classes of switching mechanism: arbitrary switching where stability represents robustness to unpredictable and undesirable perturbation, constrained switching, including random (within a known stochastic distribution), dwell-time (with a known minimum duration for each subsystem) and autonomously-generated (with a pre-assigned mechanism) switching; and designed switching in which a measurable and freely-assigned switching mechanism contributes to stability by acting as a control input. For each of these classes this book propounds: detailed stability analysis and/or design, related robustness and performance issues, connections to other control problems and many motivating and illustrative examples.

Stability Theory for Dynamic Equations on Time Scales

Stability Theory for Dynamic Equations on Time Scales PDF Author: Anatoly A. Martynyuk
Publisher: Birkhäuser
ISBN: 3319422138
Category : Mathematics
Languages : en
Pages : 233

Get Book Here

Book Description
This monograph is a first in the world to present three approaches for stability analysis of solutions of dynamic equations. The first approach is based on the application of dynamic integral inequalities and the fundamental matrix of solutions of linear approximation of dynamic equations. The second is based on the generalization of the direct Lyapunovs method for equations on time scales, using scalar, vector and matrix-valued auxiliary functions. The third approach is the application of auxiliary functions (scalar, vector, or matrix-valued ones) in combination with differential dynamic inequalities. This is an alternative comparison method, developed for time continuous and time discrete systems.In recent decades, automatic control theory in the study of air- and spacecraft dynamics and in other areas of modern applied mathematics has encountered problems in the analysis of the behavior of solutions of time continuous-discrete linear and/or nonlinear equations of perturbed motion. In the book “Men of Mathematics,” 1937, E.T.Bell wrote: “A major task of mathematics today is to harmonize the continuous and the discrete, to include them in one comprehensive mathematics, and to eliminate obscurity from both.”Mathematical analysis on time scales accomplishes exactly this. This research has potential applications in such areas as theoretical and applied mechanics, neurodynamics, mathematical biology and finance among others.

Stability of Dynamical Systems

Stability of Dynamical Systems PDF Author:
Publisher: Springer Science & Business Media
ISBN: 0817644865
Category : Differentiable dynamical systems
Languages : en
Pages : 516

Get Book Here

Book Description
In the analysis and synthesis of contemporary systems, engineers and scientists are frequently confronted with increasingly complex models that may simultaneously include components whose states evolve along continuous time and discrete instants; components whose descriptions may exhibit nonlinearities, time lags, transportation delays, hysteresis effects, and uncertainties in parameters; and components that cannot be described by various classical equations, as in the case of discrete-event systems, logic commands, and Petri nets. The qualitative analysis of such systems requires results for finite-dimensional and infinite-dimensional systems; continuous-time and discrete-time systems; continuous continuous-time and discontinuous continuous-time systems; and hybrid systems involving a mixture of continuous and discrete dynamics. Filling a gap in the literature, this textbook presents the first comprehensive stability analysis of all the major types of system models described above. Throughout the book, the applicability of the developed theory is demonstrated by means of many specific examples and applications to important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, artificial neural networks (with and without time delays), digital signal processing, a class of discrete-event systems (with applications to manufacturing and computer load balancing problems) and a multicore nuclear reactor model. The book covers the following four general topics: * Representation and modeling of dynamical systems of the types described above * Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces * Specialization of this stability theory to finite-dimensional dynamical systems * Specialization of this stability theory to infinite-dimensional dynamical systems Replete with exercises and requiring basic knowledge of linear algebra, analysis, and differential equations, the work may be used as a textbook for graduate courses in stability theory of dynamical systems. The book may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, physics, chemistry, biology, and economics.

Dynamical System Theory in Biology: Stability theory and its applications

Dynamical System Theory in Biology: Stability theory and its applications PDF Author: Robert Rosen
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 330

Get Book Here

Book Description


Dynamical Systems

Dynamical Systems PDF Author: Rafael Labarca
Publisher: CRC Press
ISBN: 9780582216211
Category : Mathematics
Languages : en
Pages : 460

Get Book Here

Book Description
In at least five countries in Latin America, high level research in the field in taking place. To stimulate this development both at home and abroad, Chilean mathematicians have been promoting international meetings like the III International School of Dynamical Systems, which took place at the Universidad de Santiago de Chile-Santiago in 1990. A number of distinguished mathematicians were present at the meeting, side by side with younger people interested in the subject. Several of the participants submitted original contributions to these proceedings of the school. The topics of the papers are central to dynamics: ergodic theory, real and complex foliations, fractal dimensions, polynomial vector fields, hyperbolicity, and expansive maps. Notes on the ergodic theory of plane billiards are also included. This book will be of particular interest to researchers and graduate students working in mathematics, particularly in ordinary differential equations, bifurcation theory, and dynamical systems. Also those working in mathematical physics and physics.

Dynamical Systems And Related Topics - Proceedings Of The International Conference

Dynamical Systems And Related Topics - Proceedings Of The International Conference PDF Author: K Shiraiwa
Publisher: World Scientific
ISBN: 9814569194
Category :
Languages : en
Pages : 642

Get Book Here

Book Description
This volume contains the proceedings of a satellite conference of the 1990 International Congress of Mathematicians. The main topics presented are mathematical theory of dynamical systems, complex dynamical systems, ergodic theory, chaos, and applications.

Qualitative Theory of Hybrid Dynamical Systems

Qualitative Theory of Hybrid Dynamical Systems PDF Author: Alexey S. Matveev
Publisher: Springer Science & Business Media
ISBN: 0817641416
Category : Mathematics
Languages : en
Pages : 362

Get Book Here

Book Description
The emerging area of hybrid dynamical systems lies at the interface of control theory and computer science, i.e., analogue 'and' digital aspects of systems. This new monograph presents state-of-the-art concepts, methods and tools for analyzing and describing hybrid dynamical systems.

Global Stability of Dynamical Systems

Global Stability of Dynamical Systems PDF Author: Michael Shub
Publisher: Springer Science & Business Media
ISBN: 1475719477
Category : Mathematics
Languages : en
Pages : 159

Get Book Here

Book Description
These notes are the result of a course in dynamical systems given at Orsay during the 1976-77 academic year. I had given a similar course at the Gradu ate Center of the City University of New York the previous year and came to France equipped with the class notes of two of my students there, Carol Hurwitz and Michael Maller. My goal was to present Smale's n-Stability Theorem as completely and compactly as possible and in such a way that the students would have easy access to the literature. I was not confident that I could do all this in lectures in French, so I decided to distribute lecture notes. I wrote these notes in English and Remi Langevin translated them into French. His work involved much more than translation. He consistently corrected for style, clarity, and accuracy. Albert Fathi got involved in reading the manuscript. His role quickly expanded to extensive rewriting and writing. Fathi wrote (5. 1) and (5. 2) and rewrote Theorem 7. 8 when I was in despair of ever getting it right with all the details. He kept me honest at all points and played a large role in the final form of the manuscript. He also did the main work in getting the manuscript ready when I had left France and Langevin was unfortunately unavailable. I ran out of steam by the time it came to Chapter 10. M.

Qualitative Theory of Dynamical Systems

Qualitative Theory of Dynamical Systems PDF Author: Anthony Michel
Publisher: CRC Press
ISBN: 9780203908297
Category : Mathematics
Languages : en
Pages : 738

Get Book Here

Book Description
"Illuminates the most important results of the Lyapunov and Lagrange stability theory for a general class of dynamical systems by developing topics in a metric space independantly of equations, inequalities, or inclusions. Applies the general theory to specific classes of equations. Presents new and expanded material on the stability analysis of hybrid dynamical systems and dynamical systems with discontinuous dynamics."