Author: Hemen Dutta
Publisher: Springer Nature
ISBN: 3031337042
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
The book aims to present several new results concerning solution and various stabilities of some functional equations in various spaces. The chapters consider various spaces to investigate stabilities justifying that stability results hold well in those spaces. It also includes results proving new insight to analyze approximate solutions to a given equation whenever uncertainty occurs. The presentation of the book should be useful for graduated students and researchers interested in the theory of functional equations to understand the useful ideas involved and problems to study further.
Stability of Some Advanced Functional Equations in Various Spaces
Author: Hemen Dutta
Publisher: Springer Nature
ISBN: 3031337042
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
The book aims to present several new results concerning solution and various stabilities of some functional equations in various spaces. The chapters consider various spaces to investigate stabilities justifying that stability results hold well in those spaces. It also includes results proving new insight to analyze approximate solutions to a given equation whenever uncertainty occurs. The presentation of the book should be useful for graduated students and researchers interested in the theory of functional equations to understand the useful ideas involved and problems to study further.
Publisher: Springer Nature
ISBN: 3031337042
Category : Technology & Engineering
Languages : en
Pages : 260
Book Description
The book aims to present several new results concerning solution and various stabilities of some functional equations in various spaces. The chapters consider various spaces to investigate stabilities justifying that stability results hold well in those spaces. It also includes results proving new insight to analyze approximate solutions to a given equation whenever uncertainty occurs. The presentation of the book should be useful for graduated students and researchers interested in the theory of functional equations to understand the useful ideas involved and problems to study further.
Introduction to Functional Equations
Author: Prasanna K. Sahoo
Publisher: CRC Press
ISBN: 1439841160
Category : Mathematics
Languages : en
Pages : 459
Book Description
Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as p
Publisher: CRC Press
ISBN: 1439841160
Category : Mathematics
Languages : en
Pages : 459
Book Description
Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as p
Functional Equations And Inequalities In Several Variables
Author: Stefan Czerwik
Publisher: World Scientific
ISBN: 9814489506
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book outlines the modern theory of functional equations and inequalities in several variables. It consists of three parts. The first is devoted to additive and convex functions defined on linear spaces with semilinear topologies. In the second part, the problems of stability of functional equations in the sense of Ulam-Hyers-Rassias and in some function spaces are considered. In the last part, the functional equations in set-valued functions are dealt with — for the first time in the mathematical literature. The book contains many fresh results concerning those problems.
Publisher: World Scientific
ISBN: 9814489506
Category : Mathematics
Languages : en
Pages : 421
Book Description
This book outlines the modern theory of functional equations and inequalities in several variables. It consists of three parts. The first is devoted to additive and convex functions defined on linear spaces with semilinear topologies. In the second part, the problems of stability of functional equations in the sense of Ulam-Hyers-Rassias and in some function spaces are considered. In the last part, the functional equations in set-valued functions are dealt with — for the first time in the mathematical literature. The book contains many fresh results concerning those problems.
Finite Difference Methods for Ordinary and Partial Differential Equations
Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356
Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Functional Equations in Several Variables
Author: J. Aczél
Publisher: Cambridge University Press
ISBN: 9780521352765
Category : Mathematics
Languages : en
Pages : 490
Book Description
This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.
Publisher: Cambridge University Press
ISBN: 9780521352765
Category : Mathematics
Languages : en
Pages : 490
Book Description
This treatise deals with modern theory of functional equations in several variables and their applications to mathematics, information theory, and the natural, behavioural and social sciences. The authors have chosen to emphasize applications, though not at the expense of theory, so they have kept the prerequisites to a minimum.
Implicit Functions and Solution Mappings
Author: Asen L. Dontchev
Publisher: Springer
ISBN: 149391037X
Category : Mathematics
Languages : en
Pages : 495
Book Description
The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.
Publisher: Springer
ISBN: 149391037X
Category : Mathematics
Languages : en
Pages : 495
Book Description
The implicit function theorem is one of the most important theorems in analysis and its many variants are basic tools in partial differential equations and numerical analysis. This second edition of Implicit Functions and Solution Mappings presents an updated and more complete picture of the field by including solutions of problems that have been solved since the first edition was published, and places old and new results in a broader perspective. The purpose of this self-contained work is to provide a reference on the topic and to provide a unified collection of a number of results which are currently scattered throughout the literature. Updates to this edition include new sections in almost all chapters, new exercises and examples, updated commentaries to chapters and an enlarged index and references section.
Stability of Functional Equations in Several Variables
Author: D.H. Hyers
Publisher: Springer Science & Business Media
ISBN: 9780817640248
Category : Mathematics
Languages : en
Pages : 330
Book Description
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.
Publisher: Springer Science & Business Media
ISBN: 9780817640248
Category : Mathematics
Languages : en
Pages : 330
Book Description
The notion of stability of functional equations of several variables in the sense used here had its origins more than half a century ago when S. Ulam posed the fundamental problem and Donald H. Hyers gave the first significant partial solution in 1941. The subject has been revised and de veloped by an increasing number of mathematicians, particularly during the last two decades. Three survey articles have been written on the subject by D. H. Hyers (1983), D. H. Hyers and Th. M. Rassias (1992), and most recently by G. L. Forti (1995). None of these works included proofs of the results which were discussed. Furthermore, it should be mentioned that wider interest in this subject area has increased substantially over the last years, yet the pre sentation of research has been confined mainly to journal articles. The time seems ripe for a comprehensive introduction to this subject, which is the purpose of the present work. This book is the first to cover the classical results along with current research in the subject. An attempt has been made to present the material in an integrated and self-contained fashion. In addition to the main topic of the stability of certain functional equa tions, some other related problems are discussed, including the stability of the convex functional inequality and the stability of minimum points. A sad note. During the final stages of the manuscript our beloved co author and friend Professor Donald H. Hyers passed away.
Hyers-Ulam Stability of Ordinary Differential Equations
Author: Arun Kumar Tripathy
Publisher: CRC Press
ISBN: 1000386899
Category : Mathematics
Languages : en
Pages : 228
Book Description
Hyers-Ulam Stability of Ordinary Differential Equations undertakes an interdisciplinary, integrative overview of a kind of stability problem unlike the existing so called stability problem for Differential equations and Difference Equations. In 1940, S. M. Ulam posed the problem: When can we assert that approximate solution of a functional equation can be approximated by a solution of the corresponding equation before the audience at the University of Wisconsin which was first answered by D. H. Hyers on Banach space in 1941. Thereafter, T. Aoki, D. H. Bourgin and Th. M. Rassias improved the result of Hyers. After that many researchers have extended the Ulam's stability problems to other functional equations and generalized Hyer's result in various directions. Last three decades, this topic is very well known as Hyers-Ulam Stability or sometimes it is referred Hyers-Ulam-Rassias Stability. This book synthesizes interdisciplinary theory, definitions and examples of Ordinary Differential and Difference Equations dealing with stability problems. The purpose of this book is to display the new kind of stability problem to global audience and accessible to a broader interdisciplinary readership for e.g those are working in Mathematical Biology Modeling, bending beam problems of mechanical engineering also, some kind of models in population dynamics. This book may be a starting point for those associated in such research and covers the methods needed to explore the analysis. Features: The state-of-art is pure analysis with background functional analysis. A rich, unique synthesis of interdisciplinary findings and insights on resources. As we understand that the real world problem is heavily involved with Differential and Difference equations, the cited problems of this book may be useful in a greater sense as long as application point of view of this Hyers-Ulam Stability theory is concerned. Information presented in an accessible way for students, researchers, scientists and engineers.
Publisher: CRC Press
ISBN: 1000386899
Category : Mathematics
Languages : en
Pages : 228
Book Description
Hyers-Ulam Stability of Ordinary Differential Equations undertakes an interdisciplinary, integrative overview of a kind of stability problem unlike the existing so called stability problem for Differential equations and Difference Equations. In 1940, S. M. Ulam posed the problem: When can we assert that approximate solution of a functional equation can be approximated by a solution of the corresponding equation before the audience at the University of Wisconsin which was first answered by D. H. Hyers on Banach space in 1941. Thereafter, T. Aoki, D. H. Bourgin and Th. M. Rassias improved the result of Hyers. After that many researchers have extended the Ulam's stability problems to other functional equations and generalized Hyer's result in various directions. Last three decades, this topic is very well known as Hyers-Ulam Stability or sometimes it is referred Hyers-Ulam-Rassias Stability. This book synthesizes interdisciplinary theory, definitions and examples of Ordinary Differential and Difference Equations dealing with stability problems. The purpose of this book is to display the new kind of stability problem to global audience and accessible to a broader interdisciplinary readership for e.g those are working in Mathematical Biology Modeling, bending beam problems of mechanical engineering also, some kind of models in population dynamics. This book may be a starting point for those associated in such research and covers the methods needed to explore the analysis. Features: The state-of-art is pure analysis with background functional analysis. A rich, unique synthesis of interdisciplinary findings and insights on resources. As we understand that the real world problem is heavily involved with Differential and Difference equations, the cited problems of this book may be useful in a greater sense as long as application point of view of this Hyers-Ulam Stability theory is concerned. Information presented in an accessible way for students, researchers, scientists and engineers.
Extensions of the Stability Theorem of the Minkowski Space in General Relativity
Author: Lydia Bieri
Publisher: American Mathematical Soc.
ISBN: 0821848232
Category : Mathematics
Languages : en
Pages : 523
Book Description
A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.
Publisher: American Mathematical Soc.
ISBN: 0821848232
Category : Mathematics
Languages : en
Pages : 523
Book Description
A famous result of Christodoulou and Klainerman is the global nonlinear stability of Minkowski spacetime. In this book, Bieri and Zipser provide two extensions to this result. In the first part, Bieri solves the Cauchy problem for the Einstein vacuum equations with more general, asymptotically flat initial data, and describes precisely the asymptotic behavior. In particular, she assumes less decay in the power of $r$ and one less derivative than in the Christodoulou-Klainerman result. She proves that in this case, too, the initial data, being globally close to the trivial data, yields a solution which is a complete spacetime, tending to the Minkowski spacetime at infinity along any geodesic. In contrast to the original situation, certain estimates in this proof are borderline in view of decay, indicating that the conditions in the main theorem on the decay at infinity on the initial data are sharp. In the second part, Zipser proves the existence of smooth, global solutions to the Einstein-Maxwell equations. A nontrivial solution of these equations is a curved spacetime with an electromagnetic field. To prove the existence of solutions to the Einstein-Maxwell equations, Zipser follows the argument and methodology introduced by Christodoulou and Klainerman. To generalize the original results, she needs to contend with the additional curvature terms that arise due to the presence of the electromagnetic field $F$; in her case the Ricci curvature of the spacetime is not identically zero but rather represented by a quadratic in the components of $F$. In particular the Ricci curvature is a constant multiple of the stress-energy tensor for $F$. Furthermore, the traceless part of the Riemann curvature tensor no longer satisfies the homogeneous Bianchi equations but rather inhomogeneous equations including components of the spacetime Ricci curvature. Therefore, the second part of this book focuses primarily on the derivation of estimates for the new terms that arise due to the presence of the electromagnetic field.
Stability and Stabilization
Author: William J. Terrell
Publisher: Princeton University Press
ISBN: 9780691134444
Category : Mathematics
Languages : en
Pages : 484
Book Description
Stability and Stabilization is the first intermediate-level textbook that covers stability and stabilization of equilibria for both linear and nonlinear time-invariant systems of ordinary differential equations. Designed for advanced undergraduates and beginning graduate students in the sciences, engineering, and mathematics, the book takes a unique modern approach that bridges the gap between linear and nonlinear systems. Presenting stability and stabilization of equilibria as a core problem of mathematical control theory, the book emphasizes the subject's mathematical coherence and unity, and it introduces and develops many of the core concepts of systems and control theory. There are five chapters on linear systems and nine chapters on nonlinear systems; an introductory chapter; a mathematical background chapter; a short final chapter on further reading; and appendixes on basic analysis, ordinary differential equations, manifolds and the Frobenius theorem, and comparison functions and their use in differential equations. The introduction to linear system theory presents the full framework of basic state-space theory, providing just enough detail to prepare students for the material on nonlinear systems. Focuses on stability and feedback stabilization Bridges the gap between linear and nonlinear systems for advanced undergraduates and beginning graduate students Balances coverage of linear and nonlinear systems Covers cascade systems Includes many examples and exercises
Publisher: Princeton University Press
ISBN: 9780691134444
Category : Mathematics
Languages : en
Pages : 484
Book Description
Stability and Stabilization is the first intermediate-level textbook that covers stability and stabilization of equilibria for both linear and nonlinear time-invariant systems of ordinary differential equations. Designed for advanced undergraduates and beginning graduate students in the sciences, engineering, and mathematics, the book takes a unique modern approach that bridges the gap between linear and nonlinear systems. Presenting stability and stabilization of equilibria as a core problem of mathematical control theory, the book emphasizes the subject's mathematical coherence and unity, and it introduces and develops many of the core concepts of systems and control theory. There are five chapters on linear systems and nine chapters on nonlinear systems; an introductory chapter; a mathematical background chapter; a short final chapter on further reading; and appendixes on basic analysis, ordinary differential equations, manifolds and the Frobenius theorem, and comparison functions and their use in differential equations. The introduction to linear system theory presents the full framework of basic state-space theory, providing just enough detail to prepare students for the material on nonlinear systems. Focuses on stability and feedback stabilization Bridges the gap between linear and nonlinear systems for advanced undergraduates and beginning graduate students Balances coverage of linear and nonlinear systems Covers cascade systems Includes many examples and exercises