Stability and Control of Unsteady Phenomena in Rotor/stator Cavities Using Large Eddy Simulation

Stability and Control of Unsteady Phenomena in Rotor/stator Cavities Using Large Eddy Simulation PDF Author: Matthieu Queguineur (docteur en mécanique des fluides).)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Unsteady phenomena in rotor/stator cavity are well known to be the source of dangerous vibrations in space turbopump. Even though many palliative measures have been taken during their design, experimental campaigns often reveal high flow oscillations that can jeopardize turbomachinery components and even the rocket engine. Today, the origin of such flow instabilities usually called 'pressure band phenomenon'(PBP) is not well understood and difficult to predict numerically. The main goal of this thesis is to investigate such phenomenon mechanism to find technical solutions so as to control it. This problematic is addressed here trough two types of configuration: an academic rotor/stator cavity and a space turbopump cavity. When it comes to cavity flows, their rotating boundary layers are known to be three dimensional and receptive to several instabilities taking the form of spirals or annuli. Reynolds Averaged Navier-Stokes Simulations (RANS)failed to predict such unsteady systems. However, Large Eddy Simulation (LES) proved to be a relevant alternative in many similar applications and is therefore chosen for the present work. Using Power Spectral Analysis (PSD) and Dynamic Mode Decomposition (DMD) on LES predictions, one shows that the PBP is retrieved in an annular smooth rotor/stator cavity and it is composed of three modes driving all the system dynamics. To investigate these mode organization and their possible interactions, a new tool called Dynamic Mode Tracking /Control (DMT/DMTC) is introduced. DMT is constructed so as to extract "on-thefly" flow coherent structures with a given frequency on the basis of LES. Furthermore, augmenting the Navier-Stokes equations with a relaxation term coupled to DMT, DMTC allows to control and follow the evolution of a controlled mode as well as non controlled ones and thereby observe interactions. This strategy after validation is applied to the annular rotating cavity and shows that the low frequency mode is generated by the dominant mode of the system. To go further, Global Linear Stability Analysis (GLSA) augmented with adjoint methods is used to shed some light on all mode origins and points out that the low frequency and dominant modes are coming from the stationary boundary layer. In order to set up control strategies, the GLSA framework is further developed introducing the concept of the sensitivity to base flow modifications which gives the location where the flow should be modified if one wants to stabilize or at least shift a frequency mode. Applied to the academic cavity, one shows that contrary to most studies in the literature, controlling the stator boundary layer is the more efficient way to damp the PBP through suction/injection devices. Finally, gathering all the previous understanding of this flow, the LES framework enables to validate the control strategies proposed and to stabilize the PBP for very low suction amplitudes. To finish, the PBP is analyzed in real space turbompump cavities. In particular, the sensitivity of this specific phenomenon to geometry changes is investigated through two configurations: one without and one with the blades of the stator of the turbopump. Even though the introduction of the blades in the LES creates a more complex flow with the presence of shocks, similar pressure fluctuation spectra are retrieved in both configurations but with azimuthal wavenumber modes that are shifted. Following the studies on the academic cavity, an adapted GLSA to the non-linear dynamics of the turbopump enables to point out that even though the PBP modes are particularly marked in the mainstream of the system, the source of these modes is located in the subcavity in the rotor-stator wheel space. In particular, GLSA results indicate that two possible ways to control the phenomenon are possible: modifying the flow around the seal rim and or modifying the leak around the hub.

Stability and Control of Unsteady Phenomena in Rotor/stator Cavities Using Large Eddy Simulation

Stability and Control of Unsteady Phenomena in Rotor/stator Cavities Using Large Eddy Simulation PDF Author: Matthieu Queguineur (docteur en mécanique des fluides).)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Unsteady phenomena in rotor/stator cavity are well known to be the source of dangerous vibrations in space turbopump. Even though many palliative measures have been taken during their design, experimental campaigns often reveal high flow oscillations that can jeopardize turbomachinery components and even the rocket engine. Today, the origin of such flow instabilities usually called 'pressure band phenomenon'(PBP) is not well understood and difficult to predict numerically. The main goal of this thesis is to investigate such phenomenon mechanism to find technical solutions so as to control it. This problematic is addressed here trough two types of configuration: an academic rotor/stator cavity and a space turbopump cavity. When it comes to cavity flows, their rotating boundary layers are known to be three dimensional and receptive to several instabilities taking the form of spirals or annuli. Reynolds Averaged Navier-Stokes Simulations (RANS)failed to predict such unsteady systems. However, Large Eddy Simulation (LES) proved to be a relevant alternative in many similar applications and is therefore chosen for the present work. Using Power Spectral Analysis (PSD) and Dynamic Mode Decomposition (DMD) on LES predictions, one shows that the PBP is retrieved in an annular smooth rotor/stator cavity and it is composed of three modes driving all the system dynamics. To investigate these mode organization and their possible interactions, a new tool called Dynamic Mode Tracking /Control (DMT/DMTC) is introduced. DMT is constructed so as to extract "on-thefly" flow coherent structures with a given frequency on the basis of LES. Furthermore, augmenting the Navier-Stokes equations with a relaxation term coupled to DMT, DMTC allows to control and follow the evolution of a controlled mode as well as non controlled ones and thereby observe interactions. This strategy after validation is applied to the annular rotating cavity and shows that the low frequency mode is generated by the dominant mode of the system. To go further, Global Linear Stability Analysis (GLSA) augmented with adjoint methods is used to shed some light on all mode origins and points out that the low frequency and dominant modes are coming from the stationary boundary layer. In order to set up control strategies, the GLSA framework is further developed introducing the concept of the sensitivity to base flow modifications which gives the location where the flow should be modified if one wants to stabilize or at least shift a frequency mode. Applied to the academic cavity, one shows that contrary to most studies in the literature, controlling the stator boundary layer is the more efficient way to damp the PBP through suction/injection devices. Finally, gathering all the previous understanding of this flow, the LES framework enables to validate the control strategies proposed and to stabilize the PBP for very low suction amplitudes. To finish, the PBP is analyzed in real space turbompump cavities. In particular, the sensitivity of this specific phenomenon to geometry changes is investigated through two configurations: one without and one with the blades of the stator of the turbopump. Even though the introduction of the blades in the LES creates a more complex flow with the presence of shocks, similar pressure fluctuation spectra are retrieved in both configurations but with azimuthal wavenumber modes that are shifted. Following the studies on the academic cavity, an adapted GLSA to the non-linear dynamics of the turbopump enables to point out that even though the PBP modes are particularly marked in the mainstream of the system, the source of these modes is located in the subcavity in the rotor-stator wheel space. In particular, GLSA results indicate that two possible ways to control the phenomenon are possible: modifying the flow around the seal rim and or modifying the leak around the hub.

Numerical Simulation of a Closed Rotor-stator System Using Large Eddy Simulation

Numerical Simulation of a Closed Rotor-stator System Using Large Eddy Simulation PDF Author: Solal Abraham Teva Amouyal
Publisher:
ISBN:
Category :
Languages : en
Pages : 50

Get Book Here

Book Description
A large eddy simulation of an enclosed annular rotor stator cavity is presented. The geometry is characterized by a large aspect ratio G = (b-a)/h = 18.32 and a small radius ratio a/b = 0.152, where a and b are the inner and outer radii of the rotating disk and h is the interdisk spacing. The rotation rate [omega] under consideration is equivalent to the rotational Reynolds number Re = [omega]b2/v = 9.5x104, where v is the kinematic viscosity. The main objective of this study is to correctly simulate the rotor stator cavity using a low order numerical scheme on unstructured grids. The numerical simulations were run on the software AVBP developed by the Centre Européen de Recherche et de Formation Avancée en Calcul Scientific. The results were compared to the experimental results obtained by Sebastien Poncet of Université Aix-Marseille. Two large eddy simulations techniques were used: the Smagorinsky and Wall-adapting local eddy-viscosity models. The simulations were run on three set of grids, each with a different cell resolution-14, 35 and 50- along the thickness of the system. Results from each mesh show a good qualitative agreement of the mean velocity field with Poncet's experimental results. It was found that the Samgorinsky model to be more appropriate for this configuration.

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: P. Sagaut
Publisher: Springer Science & Business Media
ISBN: 9783540263449
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Direct and Large-Eddy Simulation XI

Direct and Large-Eddy Simulation XI PDF Author: Maria Vittoria Salvetti
Publisher: Springer
ISBN: 3030049159
Category : Technology & Engineering
Languages : en
Pages : 562

Get Book Here

Book Description
This book gathers the proceedings of the 11th workshop on Direct and Large Eddy Simulation (DLES), which was held in Pisa, Italy in May 2017. The event focused on modern techniques for simulating turbulent flows based on the partial or full resolution of the instantaneous turbulent flow structures, as Direct Numerical Simulation (DNS), Large-Eddy Simulation (LES) or hybrid models based on a combination of LES and RANS approaches. In light of the growing capacities of modern computers, these approaches have been gaining more and more interest over the years and will undoubtedly be developed and applied further. The workshop offered a unique opportunity to establish a state-of-the-art of DNS, LES and related techniques for the computation and modeling of turbulent and transitional flows and to discuss about recent advances and applications. This volume contains most of the contributed papers, which were submitted and further reviewed for publication. They cover advances in computational techniques, SGS modeling, boundary conditions, post-processing and data analysis, and applications in several fields, namely multiphase and reactive flows, convection and heat transfer, compressible flows, aerodynamics of airfoils and wings, bluff-body and separated flows, internal flows and wall turbulence and other complex flows.

Direct and Large-Eddy Simulation VIII

Direct and Large-Eddy Simulation VIII PDF Author: Hans Kuerten
Publisher: Springer Science & Business Media
ISBN: 9400724829
Category : Computers
Languages : en
Pages : 460

Get Book Here

Book Description
This volume continues previous DLES proceedings books, presenting modern developments in turbulent flow research. It is comprehensive in its coverage of numerical and modeling techniques for fluid mechanics. After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003, Poitiers in 2005, and Trieste in 2009, the 8th workshop, DLES8, was held in Eindhoven, The Netherlands, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of this workshop is to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field was a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations.

Quality and Reliability of Large-Eddy Simulations

Quality and Reliability of Large-Eddy Simulations PDF Author: Johan Meyers
Publisher: Springer Science & Business Media
ISBN: 1402085788
Category : Science
Languages : en
Pages : 390

Get Book Here

Book Description
Computational resources have developed to the level that, for the first time, it is becoming possible to apply large-eddy simulation (LES) to turbulent flow problems of realistic complexity. Many examples can be found in technology and in a variety of natural flows. This puts issues related to assessing, assuring, and predicting the quality of LES into the spotlight. Several LES studies have been published in the past, demonstrating a high level of accuracy with which turbulent flow predictions can be attained, without having to resort to the excessive requirements on computational resources imposed by direct numerical simulations. However, the setup and use of turbulent flow simulations requires a profound knowledge of fluid mechanics, numerical techniques, and the application under consideration. The susceptibility of large-eddy simulations to errors in modelling, in numerics, and in the treatment of boundary conditions, can be quite large due to nonlinear accumulation of different contributions over time, leading to an intricate and unpredictable situation. A full understanding of the interacting error dynamics in large-eddy simulations is still lacking. To ensure the reliability of large-eddy simulations for a wide range of industrial users, the development of clear standards for the evaluation, prediction, and control of simulation errors in LES is summoned. The workshop on Quality and Reliability of Large-Eddy Simulations, held October 22-24, 2007 in Leuven, Belgium (QLES2007), provided one of the first platforms specifically addressing these aspects of LES.

Large Eddy Simulation for Incompressible Flows

Large Eddy Simulation for Incompressible Flows PDF Author: Pierre Sagaut
Publisher: Springer Science & Business Media
ISBN: 3662044161
Category : Science
Languages : en
Pages : 326

Get Book Here

Book Description
First concise textbook on Large-Eddy Simulation, a very important method in scientific computing and engineering From the foreword to the third edition written by Charles Meneveau: "... this meticulously assembled and significantly enlarged description of the many aspects of LES will be a most welcome addition to the bookshelves of scientists and engineers in fluid mechanics, LES practitioners, and students of turbulence in general."

Implicit Large Eddy Simulation for Unsteady Turbulent Flows

Implicit Large Eddy Simulation for Unsteady Turbulent Flows PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 9

Get Book Here

Book Description


International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 1016

Get Book Here

Book Description


Flow and Heat Transfer in Rotating-disc Systems

Flow and Heat Transfer in Rotating-disc Systems PDF Author: John Michael Owen
Publisher:
ISBN: 9780863800900
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
Discussing fluid mechanics and heat transfer in rotating-disc systems, this text simplifies and extends existing information to provide a basic understanding of the subject. Physical insight, mathematical models and experimental data are used to explain the flow structure and provide theoretical methods and correlations which will be of use to research workers and designers.