Author: Paul Dirac
Publisher: Springer Science & Business Media
ISBN: 1475700342
Category : Science
Languages : en
Pages : 97
Book Description
1. Hilbert Space The words "Hilbert space" here will always denote what math ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.
Spinors in Hilbert Space
Author: Paul Dirac
Publisher: Springer Science & Business Media
ISBN: 1475700342
Category : Science
Languages : en
Pages : 97
Book Description
1. Hilbert Space The words "Hilbert space" here will always denote what math ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.
Publisher: Springer Science & Business Media
ISBN: 1475700342
Category : Science
Languages : en
Pages : 97
Book Description
1. Hilbert Space The words "Hilbert space" here will always denote what math ematicians call a separable Hilbert space. It is composed of vectors each with a denumerable infinity of coordinates ql' q2' Q3, .... Usually the coordinates are considered to be complex numbers and each vector has a squared length ~rIQrI2. This squared length must converge in order that the q's may specify a Hilbert vector. Let us express qr in terms of real and imaginary parts, qr = Xr + iYr' Then the squared length is l:.r(x; + y;). The x's and y's may be looked upon as the coordinates of a vector. It is again a Hilbert vector, but it is a real Hilbert vector, with only real coordinates. Thus a complex Hilbert vector uniquely determines a real Hilbert vector. The second vector has, at first sight, twice as many coordinates as the first one. But twice a denumerable in finity is again a denumerable infinity, so the second vector has the same number of coordinates as the first. Thus a complex Hilbert vector is not a more general kind of quantity than a real one.
Spinors in Hilbert Space
Author: Roger Plymen
Publisher: Cambridge University Press
ISBN: 9780521450225
Category : Mathematics
Languages : en
Pages : 192
Book Description
A definitive self-contained account of the subject. Of appeal to a wide audience in mathematics and physics.
Publisher: Cambridge University Press
ISBN: 9780521450225
Category : Mathematics
Languages : en
Pages : 192
Book Description
A definitive self-contained account of the subject. Of appeal to a wide audience in mathematics and physics.
Introduction to Symplectic Dirac Operators
Author: Katharina Habermann
Publisher: Springer
ISBN: 3540334211
Category : Mathematics
Languages : en
Pages : 131
Book Description
This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.
Publisher: Springer
ISBN: 3540334211
Category : Mathematics
Languages : en
Pages : 131
Book Description
This volume is the first one that gives a systematic and self-contained introduction to the theory of symplectic Dirac operators and reflects the current state of the subject. At the same time, it is intended to establish the idea that symplectic spin geometry and symplectic Dirac operators may give valuable tools in symplectic geometry and symplectic topology, which have become important fields and very active areas of mathematical research.
Clifford Algebras and Spinor Structures
Author: Rafal Ablamowicz
Publisher: Springer Science & Business Media
ISBN: 9401584222
Category : Mathematics
Languages : en
Pages : 428
Book Description
This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.
Publisher: Springer Science & Business Media
ISBN: 9401584222
Category : Mathematics
Languages : en
Pages : 428
Book Description
This volume is dedicated to the memory of Albert Crumeyrolle, who died on June 17, 1992. In organizing the volume we gave priority to: articles summarizing Crumeyrolle's own work in differential geometry, general relativity and spinors, articles which give the reader an idea of the depth and breadth of Crumeyrolle's research interests and influence in the field, articles of high scientific quality which would be of general interest. In each of the areas to which Crumeyrolle made significant contribution - Clifford and exterior algebras, Weyl and pure spinors, spin structures on manifolds, principle of triality, conformal geometry - there has been substantial progress. Our hope is that the volume conveys the originality of Crumeyrolle's own work, the continuing vitality of the field he influenced, and the enduring respect for, and tribute to, him and his accomplishments in the mathematical community. It isour pleasure to thank Peter Morgan, Artibano Micali, Joseph Grifone, Marie Crumeyrolle and Kluwer Academic Publishers for their help in preparingthis volume.
Spinors on Singular Spaces and the Topology of Causal Fermion Systems
Author: Felix Finster
Publisher: American Mathematical Soc.
ISBN: 1470436213
Category : Mathematics
Languages : en
Pages : 96
Book Description
Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.
Publisher: American Mathematical Soc.
ISBN: 1470436213
Category : Mathematics
Languages : en
Pages : 96
Book Description
Causal fermion systems and Riemannian fermion systems are proposed as a framework for describing non-smooth geometries. In particular, this framework provides a setting for spinors on singular spaces. The underlying topological structures are introduced and analyzed. The connection to the spin condition in differential topology is worked out. The constructions are illustrated by many simple examples such as the Euclidean plane, the two-dimensional Minkowski space, a conical singularity, a lattice system as well as the curvature singularity of the Schwarzschild space-time. As further examples, it is shown how complex and Kähler structures can be encoded in Riemannian fermion systems.
Spinors in Hilbert Space
Author: Paul Adrien Maurice Dirac
Publisher:
ISBN:
Category : Hilbert space
Languages : en
Pages : 200
Book Description
Publisher:
ISBN:
Category : Hilbert space
Languages : en
Pages : 200
Book Description
Spinors in Physics
Author: Jean Hladik
Publisher: Springer Science & Business Media
ISBN: 1461214882
Category : Science
Languages : en
Pages : 228
Book Description
Invented by Dirac in creating his relativistic quantum theory of the electron, spinors are important in quantum theory, relativity, nuclear physics, atomic and molecular physics, and condensed matter physics. Essentially, they are the mathematical entities that correspond to electrons in the same way that ordinary wave functions correspond to classical particles. Because of their relations to the rotation group SO(n) and the unitary group SU(n), this discussion will be of interest to applied mathematicians as well as physicists.
Publisher: Springer Science & Business Media
ISBN: 1461214882
Category : Science
Languages : en
Pages : 228
Book Description
Invented by Dirac in creating his relativistic quantum theory of the electron, spinors are important in quantum theory, relativity, nuclear physics, atomic and molecular physics, and condensed matter physics. Essentially, they are the mathematical entities that correspond to electrons in the same way that ordinary wave functions correspond to classical particles. Because of their relations to the rotation group SO(n) and the unitary group SU(n), this discussion will be of interest to applied mathematicians as well as physicists.
The Theory of Spinors
Author: Élie Cartan
Publisher: Courier Corporation
ISBN: 0486137325
Category : Mathematics
Languages : en
Pages : 193
Book Description
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.
Publisher: Courier Corporation
ISBN: 0486137325
Category : Mathematics
Languages : en
Pages : 193
Book Description
Describes orthgonal and related Lie groups, using real or complex parameters and indefinite metrics. Develops theory of spinors by giving a purely geometric definition of these mathematical entities.
Spinors, Twistors, Clifford Algebras and Quantum Deformations
Author: Andrzej Borowiec
Publisher: Springer Science & Business Media
ISBN: 9401117195
Category : Science
Languages : en
Pages : 433
Book Description
ZBIGNIEW OZIEWICZ University of Wroclaw, Poland December 1992 The First Max Born Symposium in Theoretical and Mathematical Phy sics, organized by the University of Wrodaw, was held in September 1991 with the intent that it would become an annual event. It is the outgrowth of the annual Seminars organized jointly since 1972 with the University of Leipzig. The name of the Symposia was proposed by Professor Jan Lopu szanski. Max Born, an outstanding German theoretical physicist, was born in 1883 in Breslau (the German name of Wrodaw) and educated here. The Second Max Born Symposium was held during the four days 24- 27 September 1992 in an old Sobotka Castle 30 km west of Wrodaw. The Sobotka Castle was built in the eleventh century. The dates engraved on the walls of the Castle are 1024, 1140, and at the last rebuilding, 1885. The castle served as a cloister until the end of the sixteenth century.
Publisher: Springer Science & Business Media
ISBN: 9401117195
Category : Science
Languages : en
Pages : 433
Book Description
ZBIGNIEW OZIEWICZ University of Wroclaw, Poland December 1992 The First Max Born Symposium in Theoretical and Mathematical Phy sics, organized by the University of Wrodaw, was held in September 1991 with the intent that it would become an annual event. It is the outgrowth of the annual Seminars organized jointly since 1972 with the University of Leipzig. The name of the Symposia was proposed by Professor Jan Lopu szanski. Max Born, an outstanding German theoretical physicist, was born in 1883 in Breslau (the German name of Wrodaw) and educated here. The Second Max Born Symposium was held during the four days 24- 27 September 1992 in an old Sobotka Castle 30 km west of Wrodaw. The Sobotka Castle was built in the eleventh century. The dates engraved on the walls of the Castle are 1024, 1140, and at the last rebuilding, 1885. The castle served as a cloister until the end of the sixteenth century.
Spin Geometry
Author: H. Blaine Lawson
Publisher: Princeton University Press
ISBN: 1400883911
Category : Mathematics
Languages : en
Pages : 442
Book Description
This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.
Publisher: Princeton University Press
ISBN: 1400883911
Category : Mathematics
Languages : en
Pages : 442
Book Description
This book offers a systematic and comprehensive presentation of the concepts of a spin manifold, spinor fields, Dirac operators, and A-genera, which, over the last two decades, have come to play a significant role in many areas of modern mathematics. Since the deeper applications of these ideas require various general forms of the Atiyah-Singer Index Theorem, the theorems and their proofs, together with all prerequisite material, are examined here in detail. The exposition is richly embroidered with examples and applications to a wide spectrum of problems in differential geometry, topology, and mathematical physics. The authors consistently use Clifford algebras and their representations in this exposition. Clifford multiplication and Dirac operator identities are even used in place of the standard tensor calculus. This unique approach unifies all the standard elliptic operators in geometry and brings fresh insights into curvature calculations. The fundamental relationships of Clifford modules to such topics as the theory of Lie groups, K-theory, KR-theory, and Bott Periodicity also receive careful consideration. A special feature of this book is the development of the theory of Cl-linear elliptic operators and the associated index theorem, which connects certain subtle spin-corbordism invariants to classical questions in geometry and has led to some of the most profound relations known between the curvature and topology of manifolds.