Author: George J. Bugh
Publisher: Vasant Corporation
ISBN: 9780971661615
Category : Science
Languages : en
Pages : 268
Book Description
This is a book of informal research papers written by George J Bugh while investigating claims by many inventors and researchers who have built unusual electromagnetic devices said to produce anomalous energy output and even electrogravity effects.Mr. Bugh is a senior staff aerospace electronics engineer with over 20 years experience. He spent the last 7 years studying these claims to determine if any could be valid and if so then to determine the source of the anomalous energy and the electrogravity effects.According to classical electrodynamics, all electrically charged particles, like quarks and electrons, should radiate away energy from gyroscopic precessional motions and orbital motions. Bugh has come to the conclusion that they really do. However, all particles are also absorbing just as much energy from all other radiating particles.The continuously absorbed energy equals the radiated energy and applies forces that move similar type particles into harmonious precesssional motions with each other. This results in a sea of electromagnetic standing waves among all matter in the universe.It is this sea of standing waves rather than quantum probability waves that best account for the wave like nature of matter. Particles move to quantized states because of electromagnetic forces that keep particle motions synchronized with this sea of standing waves.This is an interaction among all matter that Ernst Mach alluded to as necessary to cause matter's characteristic of inertia. Einstein called this Mach's Principle. Einstein studied Mach's ideas while developing his theory of General Relativity.Using common sense and classical electrodynamics, Bugh explains how these particle spin interactions are possible even among compensating spins. Technology advancements are possible based on these particle spin interactions.
Spin Wave Technology
Author: George J. Bugh
Publisher: Vasant Corporation
ISBN: 9780971661615
Category : Science
Languages : en
Pages : 268
Book Description
This is a book of informal research papers written by George J Bugh while investigating claims by many inventors and researchers who have built unusual electromagnetic devices said to produce anomalous energy output and even electrogravity effects.Mr. Bugh is a senior staff aerospace electronics engineer with over 20 years experience. He spent the last 7 years studying these claims to determine if any could be valid and if so then to determine the source of the anomalous energy and the electrogravity effects.According to classical electrodynamics, all electrically charged particles, like quarks and electrons, should radiate away energy from gyroscopic precessional motions and orbital motions. Bugh has come to the conclusion that they really do. However, all particles are also absorbing just as much energy from all other radiating particles.The continuously absorbed energy equals the radiated energy and applies forces that move similar type particles into harmonious precesssional motions with each other. This results in a sea of electromagnetic standing waves among all matter in the universe.It is this sea of standing waves rather than quantum probability waves that best account for the wave like nature of matter. Particles move to quantized states because of electromagnetic forces that keep particle motions synchronized with this sea of standing waves.This is an interaction among all matter that Ernst Mach alluded to as necessary to cause matter's characteristic of inertia. Einstein called this Mach's Principle. Einstein studied Mach's ideas while developing his theory of General Relativity.Using common sense and classical electrodynamics, Bugh explains how these particle spin interactions are possible even among compensating spins. Technology advancements are possible based on these particle spin interactions.
Publisher: Vasant Corporation
ISBN: 9780971661615
Category : Science
Languages : en
Pages : 268
Book Description
This is a book of informal research papers written by George J Bugh while investigating claims by many inventors and researchers who have built unusual electromagnetic devices said to produce anomalous energy output and even electrogravity effects.Mr. Bugh is a senior staff aerospace electronics engineer with over 20 years experience. He spent the last 7 years studying these claims to determine if any could be valid and if so then to determine the source of the anomalous energy and the electrogravity effects.According to classical electrodynamics, all electrically charged particles, like quarks and electrons, should radiate away energy from gyroscopic precessional motions and orbital motions. Bugh has come to the conclusion that they really do. However, all particles are also absorbing just as much energy from all other radiating particles.The continuously absorbed energy equals the radiated energy and applies forces that move similar type particles into harmonious precesssional motions with each other. This results in a sea of electromagnetic standing waves among all matter in the universe.It is this sea of standing waves rather than quantum probability waves that best account for the wave like nature of matter. Particles move to quantized states because of electromagnetic forces that keep particle motions synchronized with this sea of standing waves.This is an interaction among all matter that Ernst Mach alluded to as necessary to cause matter's characteristic of inertia. Einstein called this Mach's Principle. Einstein studied Mach's ideas while developing his theory of General Relativity.Using common sense and classical electrodynamics, Bugh explains how these particle spin interactions are possible even among compensating spins. Technology advancements are possible based on these particle spin interactions.
Spin Waves
Author: Daniel D. Stancil
Publisher: Springer Science & Business Media
ISBN: 0387778659
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
Publisher: Springer Science & Business Media
ISBN: 0387778659
Category : Technology & Engineering
Languages : en
Pages : 348
Book Description
This book begins by introducing magnetism and discusses magnetic properties of materials, magnetic moments of atoms and ions, and the elements important to magnetism. It covers magnetic susceptibilities and electromagnetic waves in anisotropic dispersive media among other topics. There are problems at the end of each chapter, many of which serve to expand or explain the material in the text. The bibliographies for each chapter give an entry to the research literature.
Spin Waves
Author: Daniel D. Stancil
Publisher: Springer Nature
ISBN: 3030685829
Category : Science
Languages : en
Pages : 252
Book Description
This book presents a collection of problems in spin wave excitations with their detailed solutions. Each chapter briefly introduces the important concepts, encouraging the reader to further explore the physics of spin wave excitations and the engineering of spin wave devices by working through the accompanying problem sets. The initial chapters cover the fundamental aspects of magnetization, with its origins in quantum mechanics, followed by chapters on spin wave excitations, such as the magnetostatic approximation, Walker's equation, the spin wave manifold in the three different excitation geometries of forward volume, backward volume and surface waves, and the dispersion of spin waves. The latter chapters focus on the practical aspects of spin waves and spin wave optical devices and use the problem sets to introduce concepts such as variational analysis and coupled mode theory. Finally, for the more advanced reader, the book covers nonlinear interactions and topics such as spin wave quantization, spin torque excitations, and the inverse Doppler effect. The topics range in difficulty from elementary to advanced. All problems are solved in detail and the reader is encouraged to develop an understanding of spin wave excitations and spin wave devices while also strengthening their mathematical, analytical, and numerical programming skills.
Publisher: Springer Nature
ISBN: 3030685829
Category : Science
Languages : en
Pages : 252
Book Description
This book presents a collection of problems in spin wave excitations with their detailed solutions. Each chapter briefly introduces the important concepts, encouraging the reader to further explore the physics of spin wave excitations and the engineering of spin wave devices by working through the accompanying problem sets. The initial chapters cover the fundamental aspects of magnetization, with its origins in quantum mechanics, followed by chapters on spin wave excitations, such as the magnetostatic approximation, Walker's equation, the spin wave manifold in the three different excitation geometries of forward volume, backward volume and surface waves, and the dispersion of spin waves. The latter chapters focus on the practical aspects of spin waves and spin wave optical devices and use the problem sets to introduce concepts such as variational analysis and coupled mode theory. Finally, for the more advanced reader, the book covers nonlinear interactions and topics such as spin wave quantization, spin torque excitations, and the inverse Doppler effect. The topics range in difficulty from elementary to advanced. All problems are solved in detail and the reader is encouraged to develop an understanding of spin wave excitations and spin wave devices while also strengthening their mathematical, analytical, and numerical programming skills.
Spin Wave Confinement
Author: Sergej O. Demokritov
Publisher: CRC Press
ISBN: 0429533616
Category : Science
Languages : en
Pages : 171
Book Description
This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role for description of very small systems.Spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, most of which will be addressed in this book. The book includes six chapters which originate from different groups of experimentalists and theoreticians dominating the field since the discovery of the effect. Different chapters of the book reflect different facets of spin wave confinement, providing a comprehensive description of the effect and its place in modern magnetism. It will be of value for scientists and engineers working on magnetic storage elements and magnetic logic, and is also suitable as an advanced textbook for graduate students.
Publisher: CRC Press
ISBN: 0429533616
Category : Science
Languages : en
Pages : 171
Book Description
This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role for description of very small systems.Spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, most of which will be addressed in this book. The book includes six chapters which originate from different groups of experimentalists and theoreticians dominating the field since the discovery of the effect. Different chapters of the book reflect different facets of spin wave confinement, providing a comprehensive description of the effect and its place in modern magnetism. It will be of value for scientists and engineers working on magnetic storage elements and magnetic logic, and is also suitable as an advanced textbook for graduate students.
Linear And Nonlinear Spin Waves In Magnetic Films And Superlattices
Author: M G Cottam
Publisher: World Scientific
ISBN: 981450548X
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
In the past few years, there has been a rapidly growing interest in the properties of spin waves (or magnons) in ordered magnetic materials. These are the low-lying excitations that characterize the dynamical behavior of the magnetization variables in ferromagnets, ferrimagnets and antiferromagnets, particularly at low temperatures. Many of the recent developments concerning spin waves have been directed towards understanding their behavior in limited magnetic samples. At the same time, there have been dramatic advances in the experimental techniques, both for preparing high-quality magnetic samples in the form of thin films and superlattices and for the study of the spin-wave excitations themselves. Magnetic thin films have long been of technological as well as scientific interest and an understanding of both the linear and nonlinear aspects of their magnetic behavior is important.
Publisher: World Scientific
ISBN: 981450548X
Category : Technology & Engineering
Languages : en
Pages : 475
Book Description
In the past few years, there has been a rapidly growing interest in the properties of spin waves (or magnons) in ordered magnetic materials. These are the low-lying excitations that characterize the dynamical behavior of the magnetization variables in ferromagnets, ferrimagnets and antiferromagnets, particularly at low temperatures. Many of the recent developments concerning spin waves have been directed towards understanding their behavior in limited magnetic samples. At the same time, there have been dramatic advances in the experimental techniques, both for preparing high-quality magnetic samples in the form of thin films and superlattices and for the study of the spin-wave excitations themselves. Magnetic thin films have long been of technological as well as scientific interest and an understanding of both the linear and nonlinear aspects of their magnetic behavior is important.
Spin-Wave Theory and Its Applications to Neutron Scattering and THz Spectroscopy
Author: Fishman Randy S
Publisher:
ISBN: 9781643271132
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9781643271132
Category :
Languages : en
Pages : 0
Book Description
Three-Dimensional Magnonics
Author: Gianluca Gubbiotti
Publisher: CRC Press
ISBN: 1000024547
Category : Science
Languages : en
Pages : 261
Book Description
Magnonics, a research field that uses spin waves, collective excitations of ordered magnetic materials, or magnons (their quanta) as a tool for signal processing, communication, and computation, has rapidly grown during the past decade because of the low-energy consumption and potential compatibility with next-generation circuits beyond CMOS electronics. The interest in 3D magnonic nanostructures follows the latest trend in conventional electronics based on expansion from 2D planar to 3D vertically integrated structures. To remain on the same technological level, a similar expansion should be realized in magnonics. Following this trend, this book provides an overview of recent developments in the exploitation of the third dimension in magnonics, with special focus on the propagation of spin waves in layered magnonic crystals, spin textures, curved surfaces, 3D nano-objects, and cavity magnonics.
Publisher: CRC Press
ISBN: 1000024547
Category : Science
Languages : en
Pages : 261
Book Description
Magnonics, a research field that uses spin waves, collective excitations of ordered magnetic materials, or magnons (their quanta) as a tool for signal processing, communication, and computation, has rapidly grown during the past decade because of the low-energy consumption and potential compatibility with next-generation circuits beyond CMOS electronics. The interest in 3D magnonic nanostructures follows the latest trend in conventional electronics based on expansion from 2D planar to 3D vertically integrated structures. To remain on the same technological level, a similar expansion should be realized in magnonics. Following this trend, this book provides an overview of recent developments in the exploitation of the third dimension in magnonics, with special focus on the propagation of spin waves in layered magnonic crystals, spin textures, curved surfaces, 3D nano-objects, and cavity magnonics.
Magnetization Oscillations and Waves
Author: A.G. Gurevich
Publisher: CRC Press
ISBN: 0429605757
Category : Science
Languages : en
Pages : 460
Book Description
Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers. Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field. Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.
Publisher: CRC Press
ISBN: 0429605757
Category : Science
Languages : en
Pages : 460
Book Description
Written by two well-known researchers in the field, this useful reference takes an applied approach to high frequency processes including oscillations and waves in ferromagnets, antiferromagnets, and ferrimagnets. Problems evaluated include ferromagnetic and antiferromagnetic resonances, spin waves, nonlinear processes, and high frequency manifestations of interactions between the magnetic system and other systems of magnetically ordered substances as elastic waves and charge carriers. Unlike previous monographs on this subject, which are highly theoretical and written for very advanced readers, this book requires only an average college background in mathematics and experimental physics. It will be a valuable addition to the library of engineers and scientists in research and development for communications applications, and scientists interested in nonlinear magnetic phenomena. It also serves as an excellent introduction to the topic for newcomers in the field. Magnetization Oscillations and Waves not only presents results but also shows readers how to obtain them; most formulas are derived with so many details that readers can reproduce them. The book includes many summaries and tables and detailed references to significant work in the area by European researchers.
Statistical Mechanics of Magnetic Excitations
Author: Enrico Rastelli
Publisher: World Scientific
ISBN: 9814355518
Category : Science
Languages : en
Pages : 359
Book Description
The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the IsingOCoHeisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations such as stripes and checkerboards should then excite theoreticians in the field of magnetism and magnetic materials research.
Publisher: World Scientific
ISBN: 9814355518
Category : Science
Languages : en
Pages : 359
Book Description
The aim of this advanced textbook is to provide the reader with a comprehensive explanation of the ground state configurations, the spin wave excitations and the equilibrium properties of spin lattices described by the IsingOCoHeisenberg Hamiltonians in the presence of short (exchange) and long range (dipole) interactions.The arguments are presented in such detail so as to enable advanced undergraduate and graduate students to cross the threshold of active research in magnetism by using both analytic calculations and Monte Carlo simulations.Recent results about unorthodox spin configurations such as stripes and checkerboards should then excite theoreticians in the field of magnetism and magnetic materials research.
Spin Current
Author: Sadamichi Maekawa
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541
Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.
Publisher: Oxford University Press
ISBN: 0198787073
Category : Science
Languages : en
Pages : 541
Book Description
In a new branch of physics and technology, called spin-electronics or spintronics, the flow of electrical charge (usual current) as well as the flow of electron spin, the so-called "spin current", are manipulated and controlled together. This book is intended to provide an introduction and guide to the new physics and applications of spin current.