Automatic Speech and Speaker Recognition

Automatic Speech and Speaker Recognition PDF Author: Chin-Hui Lee
Publisher: Springer Science & Business Media
ISBN: 1461313678
Category : Technology & Engineering
Languages : en
Pages : 524

Get Book Here

Book Description
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.

Automatic Speech and Speaker Recognition

Automatic Speech and Speaker Recognition PDF Author: Chin-Hui Lee
Publisher: Springer Science & Business Media
ISBN: 1461313678
Category : Technology & Engineering
Languages : en
Pages : 524

Get Book Here

Book Description
Research in the field of automatic speech and speaker recognition has made a number of significant advances in the last two decades, influenced by advances in signal processing, algorithms, architectures, and hardware. These advances include: the adoption of a statistical pattern recognition paradigm; the use of the hidden Markov modeling framework to characterize both the spectral and the temporal variations in the speech signal; the use of a large set of speech utterance examples from a large population of speakers to train the hidden Markov models of some fundamental speech units; the organization of speech and language knowledge sources into a structural finite state network; and the use of dynamic, programming based heuristic search methods to find the best word sequence in the lexical network corresponding to the spoken utterance. Automatic Speech and Speaker Recognition: Advanced Topics groups together in a single volume a number of important topics on speech and speaker recognition, topics which are of fundamental importance, but not yet covered in detail in existing textbooks. Although no explicit partition is given, the book is divided into five parts: Chapters 1-2 are devoted to technology overviews; Chapters 3-12 discuss acoustic modeling of fundamental speech units and lexical modeling of words and pronunciations; Chapters 13-15 address the issues related to flexibility and robustness; Chapter 16-18 concern the theoretical and practical issues of search; Chapters 19-20 give two examples of algorithm and implementational aspects for recognition system realization. Audience: A reference book for speech researchers and graduate students interested in pursuing potential research on the topic. May also be used as a text for advanced courses on the subject.

Fundamentals of Speaker Recognition

Fundamentals of Speaker Recognition PDF Author: Homayoon Beigi
Publisher: Springer Science & Business Media
ISBN: 0387775927
Category : Technology & Engineering
Languages : en
Pages : 984

Get Book Here

Book Description
An emerging technology, Speaker Recognition is becoming well-known for providing voice authentication over the telephone for helpdesks, call centres and other enterprise businesses for business process automation. "Fundamentals of Speaker Recognition" introduces Speaker Identification, Speaker Verification, Speaker (Audio Event) Classification, Speaker Detection, Speaker Tracking and more. The technical problems are rigorously defined, and a complete picture is made of the relevance of the discussed algorithms and their usage in building a comprehensive Speaker Recognition System. Designed as a textbook with examples and exercises at the end of each chapter, "Fundamentals of Speaker Recognition" is suitable for advanced-level students in computer science and engineering, concentrating on biometrics, speech recognition, pattern recognition, signal processing and, specifically, speaker recognition. It is also a valuable reference for developers of commercial technology and for speech scientists. Please click on the link under "Additional Information" to view supplemental information including the Table of Contents and Index.

Automatic Speech and Speaker Recognition

Automatic Speech and Speaker Recognition PDF Author: Joseph Keshet
Publisher: John Wiley & Sons
ISBN: 9780470742037
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
This book discusses large margin and kernel methods for speech and speaker recognition Speech and Speaker Recognition: Large Margin and Kernel Methods is a collation of research in the recent advances in large margin and kernel methods, as applied to the field of speech and speaker recognition. It presents theoretical and practical foundations of these methods, from support vector machines to large margin methods for structured learning. It also provides examples of large margin based acoustic modelling for continuous speech recognizers, where the grounds for practical large margin sequence learning are set. Large margin methods for discriminative language modelling and text independent speaker verification are also addressed in this book. Key Features: Provides an up-to-date snapshot of the current state of research in this field Covers important aspects of extending the binary support vector machine to speech and speaker recognition applications Discusses large margin and kernel method algorithms for sequence prediction required for acoustic modeling Reviews past and present work on discriminative training of language models, and describes different large margin algorithms for the application of part-of-speech tagging Surveys recent work on the use of kernel approaches to text-independent speaker verification, and introduces the main concepts and algorithms Surveys recent work on kernel approaches to learning a similarity matrix from data This book will be of interest to researchers, practitioners, engineers, and scientists in speech processing and machine learning fields.

Speaker Classification I

Speaker Classification I PDF Author: Christian Müller
Publisher: Springer
ISBN: 354074200X
Category : Computers
Languages : en
Pages : 363

Get Book Here

Book Description
This volume and its companion volume LNAI 4441 constitute a state-of-the-art survey in the field of speaker classification. Together they address such intriguing issues as how speaker characteristics are manifested in voice and speaking behavior. The nineteen contributions in this volume are organized into topical sections covering fundamentals, characteristics, applications, methods, and evaluation.

Encyclopedia of Biometrics

Encyclopedia of Biometrics PDF Author: Stan Z. Li
Publisher: Springer Science & Business Media
ISBN: 0387730028
Category : Computers
Languages : en
Pages : 1466

Get Book Here

Book Description
With an A–Z format, this encyclopedia provides easy access to relevant information on all aspects of biometrics. It features approximately 250 overview entries and 800 definitional entries. Each entry includes a definition, key words, list of synonyms, list of related entries, illustration(s), applications, and a bibliography. Most entries include useful literature references providing the reader with a portal to more detailed information.

Handbook of Research on Knowledge and Organization Systems in Library and Information Science

Handbook of Research on Knowledge and Organization Systems in Library and Information Science PDF Author: Holland, Barbara Jane
Publisher: IGI Global
ISBN: 1799872599
Category : Language Arts & Disciplines
Languages : en
Pages : 574

Get Book Here

Book Description
Due to changes in the learning and research environment, changes in the behavior of library users, and unique global disruptions such as the COVID-19 pandemic, libraries have had to adapt and evolve to remain up-to-date and responsive to their users. Thus, libraries are adding new, digital resources and services while maintaining most of the old, traditional resources and services. New areas of research and inquiry in the field of library and information science explore the applications of machine learning, artificial intelligence, and other technologies to better serve and expand the library community. The Handbook of Research on Knowledge and Organization Systems in Library and Information Science examines new technologies and systems and their application and adoption within libraries. This handbook provides a global perspective on current and future trends concerning library and information science. Covering topics such as machine learning, library management, ICTs, blockchain technology, social media, and augmented reality, this book is essential for librarians, library directors, library technicians, media specialists, data specialists, catalogers, information resource officers, administrators, IT consultants and specialists, academicians, and students.

Python Deep Learning Cookbook

Python Deep Learning Cookbook PDF Author: Indra den Bakker
Publisher: Packt Publishing Ltd
ISBN: 1787122255
Category : Computers
Languages : en
Pages : 321

Get Book Here

Book Description
Solve different problems in modelling deep neural networks using Python, Tensorflow, and Keras with this practical guide About This Book Practical recipes on training different neural network models and tuning them for optimal performance Use Python frameworks like TensorFlow, Caffe, Keras, Theano for Natural Language Processing, Computer Vision, and more A hands-on guide covering the common as well as the not so common problems in deep learning using Python Who This Book Is For This book is intended for machine learning professionals who are looking to use deep learning algorithms to create real-world applications using Python. Thorough understanding of the machine learning concepts and Python libraries such as NumPy, SciPy and scikit-learn is expected. Additionally, basic knowledge in linear algebra and calculus is desired. What You Will Learn Implement different neural network models in Python Select the best Python framework for deep learning such as PyTorch, Tensorflow, MXNet and Keras Apply tips and tricks related to neural networks internals, to boost learning performances Consolidate machine learning principles and apply them in the deep learning field Reuse and adapt Python code snippets to everyday problems Evaluate the cost/benefits and performance implication of each discussed solution In Detail Deep Learning is revolutionizing a wide range of industries. For many applications, deep learning has proven to outperform humans by making faster and more accurate predictions. This book provides a top-down and bottom-up approach to demonstrate deep learning solutions to real-world problems in different areas. These applications include Computer Vision, Natural Language Processing, Time Series, and Robotics. The Python Deep Learning Cookbook presents technical solutions to the issues presented, along with a detailed explanation of the solutions. Furthermore, a discussion on corresponding pros and cons of implementing the proposed solution using one of the popular frameworks like TensorFlow, PyTorch, Keras and CNTK is provided. The book includes recipes that are related to the basic concepts of neural networks. All techniques s, as well as classical networks topologies. The main purpose of this book is to provide Python programmers a detailed list of recipes to apply deep learning to common and not-so-common scenarios. Style and approach Unique blend of independent recipes arranged in the most logical manner

ICCCE 2019

ICCCE 2019 PDF Author: Amit Kumar
Publisher: Springer
ISBN: 981138715X
Category : Technology & Engineering
Languages : en
Pages : 436

Get Book Here

Book Description
This book is a collection research papers and articles from the 2nd International Conference on Communications and Cyber-Physical Engineering (ICCCE – 2019), held in Pune, India in Feb 2019. Discussing the latest developments in voice and data communication engineering, cyber-physical systems, network science, communication software, image- and multimedia processing research and applications, as well as communication technologies and other related technologies, it includes contributions from both academia and industry.

Robust Speaker Recognition in Noisy Environments

Robust Speaker Recognition in Noisy Environments PDF Author: K. Sreenivasa Rao
Publisher: Springer
ISBN: 9783319071299
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This book discusses speaker recognition methods to deal with realistic variable noisy environments. The text covers authentication systems for; robust noisy background environments, functions in real time and incorporated in mobile devices. The book focuses on different approaches to enhance the accuracy of speaker recognition in presence of varying background environments. The authors examine: (a) Feature compensation using multiple background models, (b) Feature mapping using data-driven stochastic models, (c) Design of super vector- based GMM-SVM framework for robust speaker recognition, (d) Total variability modeling (i-vectors) in a discriminative framework and (e) Boosting method to fuse evidences from multiple SVM models.

Advances in Speech Signal Processing

Advances in Speech Signal Processing PDF Author: Sadaoki Furui
Publisher: CRC Press
ISBN: 9780824785406
Category : Technology & Engineering
Languages : en
Pages : 896

Get Book Here

Book Description
In 25 original chapter-articles, leading authorities address various aspects of speech signal processing, stressing the advances during the past five to ten years. The volume presents a wealth of material, in a variety of styles, and is divided into four sections: analysis and coding (nine chapters)