Author: S.Unnikrishna Pillai
Publisher: Springer Science & Business Media
ISBN: 1461383188
Category : Technology & Engineering
Languages : en
Pages : 337
Book Description
Spectrum estimation refers to analyzing the distribution of power or en ergy with frequency of the given signal, and system identification refers to ways of characterizing the mechanism or system behind the observed sig nal/data. Such an identification allows one to predict the system outputs, and as a result this has considerable impact in several areas such as speech processing, pattern recognition, target identification, seismology, and signal processing. A new outlook to spectrum estimation and system identification is pre sented here by making use of the powerful concepts of positive functions and bounded functions. An indispensable tool in classical network analysis and synthesis problems, positive functions and bounded functions are well and their intimate one-to-one connection with power spectra understood, makes it possible to study many of the signal processing problems from a new viewpoint. Positive functions have been used to study interpolation problems in the past, and although the spectrum extension problem falls within this scope, surprisingly the system identification problem can also be analyzed in this context in an interesting manner. One useful result in this connection is regarding rational and stable approximation of nonrational transfer functions both in the single-channel case and the multichannel case. Such an approximation has important applications in distributed system theory, simulation of systems governed by partial differential equations, and analysis of differential equations with delays. This book is intended as an introductory graduate level textbook and as a reference book for engineers and researchers.
Spectrum Estimation and System Identification
Digital Spectral Analysis
Author: S. Lawrence Marple, Jr.
Publisher: Courier Dover Publications
ISBN: 048678052X
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Digital Spectral Analysis offers a broad perspective of spectral estimation techniques and their implementation. Coverage includes spectral estimation of discrete-time or discrete-space sequences derived by sampling continuous-time or continuous-space signals. The treatment emphasizes the behavior of each spectral estimator for short data records and provides over 40 techniques described and available as implemented MATLAB functions. In addition to summarizing classical spectral estimation, this text provides theoretical background and review material in linear systems, Fourier transforms, matrix algebra, random processes, and statistics. Topics include Prony's method, parametric methods, the minimum variance method, eigenanalysis-based estimators, multichannel methods, and two-dimensional methods. Suitable for advanced undergraduates and graduate students of electrical engineering — and for scientific use in the signal processing application community outside of universities — the treatment's prerequisites include some knowledge of discrete-time linear system and transform theory, introductory probability and statistics, and linear algebra. 1987 edition.
Publisher: Courier Dover Publications
ISBN: 048678052X
Category : Technology & Engineering
Languages : en
Pages : 435
Book Description
Digital Spectral Analysis offers a broad perspective of spectral estimation techniques and their implementation. Coverage includes spectral estimation of discrete-time or discrete-space sequences derived by sampling continuous-time or continuous-space signals. The treatment emphasizes the behavior of each spectral estimator for short data records and provides over 40 techniques described and available as implemented MATLAB functions. In addition to summarizing classical spectral estimation, this text provides theoretical background and review material in linear systems, Fourier transforms, matrix algebra, random processes, and statistics. Topics include Prony's method, parametric methods, the minimum variance method, eigenanalysis-based estimators, multichannel methods, and two-dimensional methods. Suitable for advanced undergraduates and graduate students of electrical engineering — and for scientific use in the signal processing application community outside of universities — the treatment's prerequisites include some knowledge of discrete-time linear system and transform theory, introductory probability and statistics, and linear algebra. 1987 edition.
Blind Equalization and System Identification
Author: Chong-Yung Chi
Publisher: Springer Science & Business Media
ISBN: 9781846280221
Category : Computers
Languages : en
Pages : 492
Book Description
The absence of training signals from many kinds of transmission necessitates the widespread use of blind equalization and system identification. There have been many algorithms developed for these purposes, working with one- or two-dimensional signals and with single-input single-output or multiple-input multiple-output, real or complex systems. It is now time for a unified treatment of this subject, pointing out the common characteristics of these algorithms as well as learning from their different perspectives. "Blind Equalization and System Identification" provides such a unified treatment presenting theory, performance analysis, simulation, implementation and applications. This is a textbook for graduate courses in discrete-time random processes, statistical signal processing, and blind equalization and system identification. It contains material which will also interest researchers and engineers working in digital communications, source separation, speech processing, and other, similar applications.
Publisher: Springer Science & Business Media
ISBN: 9781846280221
Category : Computers
Languages : en
Pages : 492
Book Description
The absence of training signals from many kinds of transmission necessitates the widespread use of blind equalization and system identification. There have been many algorithms developed for these purposes, working with one- or two-dimensional signals and with single-input single-output or multiple-input multiple-output, real or complex systems. It is now time for a unified treatment of this subject, pointing out the common characteristics of these algorithms as well as learning from their different perspectives. "Blind Equalization and System Identification" provides such a unified treatment presenting theory, performance analysis, simulation, implementation and applications. This is a textbook for graduate courses in discrete-time random processes, statistical signal processing, and blind equalization and system identification. It contains material which will also interest researchers and engineers working in digital communications, source separation, speech processing, and other, similar applications.
Identification of Dynamic Systems
Author: Rolf Isermann
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
Publisher: Springer
ISBN: 9783540871552
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.
System Identification
Author: Torsten Söderström
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 646
Book Description
A textbook designed for senior undergraduate and graduate level classroom courses on system identification. Examples and problems. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 646
Book Description
A textbook designed for senior undergraduate and graduate level classroom courses on system identification. Examples and problems. Annotation copyrighted by Book News, Inc., Portland, OR
Nonlinear system identification. 1. Nonlinear system parameter identification
Author: Robert Haber
Publisher: Springer Science & Business Media
ISBN: 9780792358565
Category : Nonlinear theories
Languages : en
Pages : 432
Book Description
Publisher: Springer Science & Business Media
ISBN: 9780792358565
Category : Nonlinear theories
Languages : en
Pages : 432
Book Description
Circuits, Signals, and Speech and Image Processing
Author: Richard C. Dorf
Publisher: CRC Press
ISBN: 1420003089
Category : Technology & Engineering
Languages : en
Pages : 694
Book Description
In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has expanded into a set of six books carefully focused on a specialized area or field of study. Each book represents a concise yet definitive collection of key concepts, models, and equations in its respective domain, thoughtfully gathered for convenient access. Circuits, Signals, and Speech and Image Processing presents all of the basic information related to electric circuits and components, analysis of circuits, the use of the Laplace transform, as well as signal, speech, and image processing using filters and algorithms. It also examines emerging areas such as text-to-speech synthesis, real-time processing, and embedded signal processing. Each article includes defining terms, references, and sources of further information. Encompassing the work of the world's foremost experts in their respective specialties, Circuits, Signals, and Speech and Image Processing features the latest developments, the broadest scope of coverage, and new material on biometrics.
Publisher: CRC Press
ISBN: 1420003089
Category : Technology & Engineering
Languages : en
Pages : 694
Book Description
In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has expanded into a set of six books carefully focused on a specialized area or field of study. Each book represents a concise yet definitive collection of key concepts, models, and equations in its respective domain, thoughtfully gathered for convenient access. Circuits, Signals, and Speech and Image Processing presents all of the basic information related to electric circuits and components, analysis of circuits, the use of the Laplace transform, as well as signal, speech, and image processing using filters and algorithms. It also examines emerging areas such as text-to-speech synthesis, real-time processing, and embedded signal processing. Each article includes defining terms, references, and sources of further information. Encompassing the work of the world's foremost experts in their respective specialties, Circuits, Signals, and Speech and Image Processing features the latest developments, the broadest scope of coverage, and new material on biometrics.
The Electrical Engineering Handbook,Second Edition
Author: Richard C. Dorf
Publisher: CRC Press
ISBN: 9781420049763
Category : Technology & Engineering
Languages : en
Pages : 2758
Book Description
In 1993, the first edition of The Electrical Engineering Handbook set a new standard for breadth and depth of coverage in an engineering reference work. Now, this classic has been substantially revised and updated to include the latest information on all the important topics in electrical engineering today. Every electrical engineer should have an opportunity to expand his expertise with this definitive guide. In a single volume, this handbook provides a complete reference to answer the questions encountered by practicing engineers in industry, government, or academia. This well-organized book is divided into 12 major sections that encompass the entire field of electrical engineering, including circuits, signal processing, electronics, electromagnetics, electrical effects and devices, and energy, and the emerging trends in the fields of communications, digital devices, computer engineering, systems, and biomedical engineering. A compendium of physical, chemical, material, and mathematical data completes this comprehensive resource. Every major topic is thoroughly covered and every important concept is defined, described, and illustrated. Conceptually challenging but carefully explained articles are equally valuable to the practicing engineer, researchers, and students. A distinguished advisory board and contributors including many of the leading authors, professors, and researchers in the field today assist noted author and professor Richard Dorf in offering complete coverage of this rapidly expanding field. No other single volume available today offers this combination of broad coverage and depth of exploration of the topics. The Electrical Engineering Handbook will be an invaluable resource for electrical engineers for years to come.
Publisher: CRC Press
ISBN: 9781420049763
Category : Technology & Engineering
Languages : en
Pages : 2758
Book Description
In 1993, the first edition of The Electrical Engineering Handbook set a new standard for breadth and depth of coverage in an engineering reference work. Now, this classic has been substantially revised and updated to include the latest information on all the important topics in electrical engineering today. Every electrical engineer should have an opportunity to expand his expertise with this definitive guide. In a single volume, this handbook provides a complete reference to answer the questions encountered by practicing engineers in industry, government, or academia. This well-organized book is divided into 12 major sections that encompass the entire field of electrical engineering, including circuits, signal processing, electronics, electromagnetics, electrical effects and devices, and energy, and the emerging trends in the fields of communications, digital devices, computer engineering, systems, and biomedical engineering. A compendium of physical, chemical, material, and mathematical data completes this comprehensive resource. Every major topic is thoroughly covered and every important concept is defined, described, and illustrated. Conceptually challenging but carefully explained articles are equally valuable to the practicing engineer, researchers, and students. A distinguished advisory board and contributors including many of the leading authors, professors, and researchers in the field today assist noted author and professor Richard Dorf in offering complete coverage of this rapidly expanding field. No other single volume available today offers this combination of broad coverage and depth of exploration of the topics. The Electrical Engineering Handbook will be an invaluable resource for electrical engineers for years to come.
The Electrical Engineering Handbook - Six Volume Set
Author: Richard C. Dorf
Publisher: CRC Press
ISBN: 1420049755
Category : Technology & Engineering
Languages : en
Pages : 3627
Book Description
In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has grown into a set of six books carefully focused on specialized areas or fields of study. Each one represents a concise yet definitive collection of key concepts, models, and equations in its respective domain, thoughtfully gathered for convenient access. Combined, they constitute the most comprehensive, authoritative resource available. Circuits, Signals, and Speech and Image Processing presents all of the basic information related to electric circuits and components, analysis of circuits, the use of the Laplace transform, as well as signal, speech, and image processing using filters and algorithms. It also examines emerging areas such as text to speech synthesis, real-time processing, and embedded signal processing. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar delves into the fields of electronics, integrated circuits, power electronics, optoelectronics, electromagnetics, light waves, and radar, supplying all of the basic information required for a deep understanding of each area. It also devotes a section to electrical effects and devices and explores the emerging fields of microlithography and power electronics. Sensors, Nanoscience, Biomedical Engineering, and Instruments provides thorough coverage of sensors, materials and nanoscience, instruments and measurements, and biomedical systems and devices, including all of the basic information required to thoroughly understand each area. It explores the emerging fields of sensors, nanotechnologies, and biological effects. Broadcasting and Optical Communication Technology explores communications, information theory, and devices, covering all of the basic information needed for a thorough understanding of these areas. It also examines the emerging areas of adaptive estimation and optical communication. Computers, Software Engineering, and Digital Devices examines digital and logical devices, displays, testing, software, and computers, presenting the fundamental concepts needed to ensure a thorough understanding of each field. It treats the emerging fields of programmable logic, hardware description languages, and parallel computing in detail. Systems, Controls, Embedded Systems, Energy, and Machines explores in detail the fields of energy devices, machines, and systems as well as control systems. It provides all of the fundamental concepts needed for thorough, in-depth understanding of each area and devotes special attention to the emerging area of embedded systems. Encompassing the work of the world's foremost experts in their respective specialties, The Electrical Engineering Handbook, Third Edition remains the most convenient, reliable source of information available. This edition features the latest developments, the broadest scope of coverage, and new material on nanotechnologies, fuel cells, embedded systems, and biometrics. The engineering community has relied on the Handbook for more than twelve years, and it will continue to be a platform to launch the next wave of advancements. The Handbook's latest incarnation features a protective slipcase, which helps you stay organized without overwhelming your bookshelf. It is an attractive addition to any collection, and will help keep each volume of the Handbook as fresh as your latest research.
Publisher: CRC Press
ISBN: 1420049755
Category : Technology & Engineering
Languages : en
Pages : 3627
Book Description
In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has grown into a set of six books carefully focused on specialized areas or fields of study. Each one represents a concise yet definitive collection of key concepts, models, and equations in its respective domain, thoughtfully gathered for convenient access. Combined, they constitute the most comprehensive, authoritative resource available. Circuits, Signals, and Speech and Image Processing presents all of the basic information related to electric circuits and components, analysis of circuits, the use of the Laplace transform, as well as signal, speech, and image processing using filters and algorithms. It also examines emerging areas such as text to speech synthesis, real-time processing, and embedded signal processing. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar delves into the fields of electronics, integrated circuits, power electronics, optoelectronics, electromagnetics, light waves, and radar, supplying all of the basic information required for a deep understanding of each area. It also devotes a section to electrical effects and devices and explores the emerging fields of microlithography and power electronics. Sensors, Nanoscience, Biomedical Engineering, and Instruments provides thorough coverage of sensors, materials and nanoscience, instruments and measurements, and biomedical systems and devices, including all of the basic information required to thoroughly understand each area. It explores the emerging fields of sensors, nanotechnologies, and biological effects. Broadcasting and Optical Communication Technology explores communications, information theory, and devices, covering all of the basic information needed for a thorough understanding of these areas. It also examines the emerging areas of adaptive estimation and optical communication. Computers, Software Engineering, and Digital Devices examines digital and logical devices, displays, testing, software, and computers, presenting the fundamental concepts needed to ensure a thorough understanding of each field. It treats the emerging fields of programmable logic, hardware description languages, and parallel computing in detail. Systems, Controls, Embedded Systems, Energy, and Machines explores in detail the fields of energy devices, machines, and systems as well as control systems. It provides all of the fundamental concepts needed for thorough, in-depth understanding of each area and devotes special attention to the emerging area of embedded systems. Encompassing the work of the world's foremost experts in their respective specialties, The Electrical Engineering Handbook, Third Edition remains the most convenient, reliable source of information available. This edition features the latest developments, the broadest scope of coverage, and new material on nanotechnologies, fuel cells, embedded systems, and biometrics. The engineering community has relied on the Handbook for more than twelve years, and it will continue to be a platform to launch the next wave of advancements. The Handbook's latest incarnation features a protective slipcase, which helps you stay organized without overwhelming your bookshelf. It is an attractive addition to any collection, and will help keep each volume of the Handbook as fresh as your latest research.
Principles of System Identification
Author: Arun K. Tangirala
Publisher: CRC Press
ISBN: 143989602X
Category : Technology & Engineering
Languages : en
Pages : 881
Book Description
Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397
Publisher: CRC Press
ISBN: 143989602X
Category : Technology & Engineering
Languages : en
Pages : 881
Book Description
Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397