Author: V. P. Shestopalov
Publisher: IET
ISBN: 9780852968765
Category : Mathematics
Languages : en
Pages : 420
Book Description
Open resonators, open waveguides and open diffraction gratings are used extensively in modern millimetre and submillemetre technology, spectroscopy and radio engineering. In this book, the physical processes in these open electromagnetic structures are analysed using a specially constructed spectral theory.
Spectral Theory and Excitation of Open Structures
Author: V. P. Shestopalov
Publisher: IET
ISBN: 9780852968765
Category : Mathematics
Languages : en
Pages : 420
Book Description
Open resonators, open waveguides and open diffraction gratings are used extensively in modern millimetre and submillemetre technology, spectroscopy and radio engineering. In this book, the physical processes in these open electromagnetic structures are analysed using a specially constructed spectral theory.
Publisher: IET
ISBN: 9780852968765
Category : Mathematics
Languages : en
Pages : 420
Book Description
Open resonators, open waveguides and open diffraction gratings are used extensively in modern millimetre and submillemetre technology, spectroscopy and radio engineering. In this book, the physical processes in these open electromagnetic structures are analysed using a specially constructed spectral theory.
Spectral Theory and Excitation of Open Structures
Author:
Publisher:
ISBN:
Category : Agriculture
Languages : en
Pages : 406
Book Description
Publisher:
ISBN:
Category : Agriculture
Languages : en
Pages : 406
Book Description
Optical Waveguide Theory
Author: Yury Shestopalov
Publisher: Springer Nature
ISBN: 9811905843
Category : Science
Languages : en
Pages : 269
Book Description
This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures —shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.
Publisher: Springer Nature
ISBN: 9811905843
Category : Science
Languages : en
Pages : 269
Book Description
This book addresses the most advanced to-date mathematical approach and numerical methods in electromagnetic field theory and wave propagation. It presents the application of developed methods and techniques to the analysis of waves in various guiding structures —shielded and open metal-dielectric waveguides of arbitrary cross-section, planar and circular waveguides filled with inhomogeneous dielectrics, metamaterials, chiral media, anisotropic media and layered media with absorption. It also looks into spectral properties of wave propagation for the waveguide families being considered, and the relevant mathematical techniques such as spectral theory of non-self-adjoint operator-valued functions are described, including rigorous proofs of the existence of various types of waves. Further, numerical methods constructed on the basis of the presented mathematical approach and the results of numerical modeling for various structures are also described in depth. The book is beneficial to a broad spectrum of readers ranging from pure and applied mathematicians in electromagnetic field theory to researchers and engineers who are familiar with mathematics. Further, it is also useful as a supplementary text for upper-level undergraduate students interested in learning more advanced topics of mathematical methods in electromagnetics.
Progress in Computational Physics (PiCP)
Author: Matthias Ehrhardt
Publisher: Bentham Science Publishers
ISBN: 1608051501
Category : Science
Languages : en
Pages : 240
Book Description
Progress in Computational Physics is a new e-book series devoted to recent research trends in computational physics. It contains chapters contributed by outstanding experts of modeling of physical problems. The series focuses on interdisciplinary computat
Publisher: Bentham Science Publishers
ISBN: 1608051501
Category : Science
Languages : en
Pages : 240
Book Description
Progress in Computational Physics is a new e-book series devoted to recent research trends in computational physics. It contains chapters contributed by outstanding experts of modeling of physical problems. The series focuses on interdisciplinary computat
Resonant Scattering and Generation of Waves
Author: Lutz Angermann
Publisher: Springer
ISBN: 3319963015
Category : Science
Languages : en
Pages : 223
Book Description
This monograph deals with theoretical aspects and numerical simulations of the interaction of electromagnetic fields with nonlinear materials. It focuses in particular on media with nonlinear polarization properties. It addresses the direct problem of nonlinear Electrodynamics, that is to understand the nonlinear behavior in the induced polarization and to analyze or even to control its impact on the propagation of electromagnetic fields in the matter. The book gives a comprehensive presentation of the results obtained by the authors during the last decade and put those findings in a broader, unified context and extends them in several directions.It is divided into eight chapters and three appendices. Chapter 1 starts from the Maxwell’s equations and develops a wave propagation theory in plate-like media with nonlinear polarizability. In chapter 2 a theoretical framework in terms of weak solutions is given in order to prove the existence and uniqueness of a solution of the semilinear boundary-value problem derived in the first chapter. Chapter 3 presents a different approach to the solvability theory of the reduced frequency-domain model. Here the boundary-value problem is reduced to finding solutions of a system of one-dimensional nonlinear Hammerstein integral equations. Chapter 4 describes an approach to the spectral analysis of the linearized system of integral equations. Chapters 5 and 6 are devoted to the numerical approximation of the solutions of the corresponding mathematical models. Chapter 7 contains detailed descriptions, discussions and evaluations of the numerical experiments. Finally, chapter 8 gives a summary of the results and an outlook for future work.
Publisher: Springer
ISBN: 3319963015
Category : Science
Languages : en
Pages : 223
Book Description
This monograph deals with theoretical aspects and numerical simulations of the interaction of electromagnetic fields with nonlinear materials. It focuses in particular on media with nonlinear polarization properties. It addresses the direct problem of nonlinear Electrodynamics, that is to understand the nonlinear behavior in the induced polarization and to analyze or even to control its impact on the propagation of electromagnetic fields in the matter. The book gives a comprehensive presentation of the results obtained by the authors during the last decade and put those findings in a broader, unified context and extends them in several directions.It is divided into eight chapters and three appendices. Chapter 1 starts from the Maxwell’s equations and develops a wave propagation theory in plate-like media with nonlinear polarizability. In chapter 2 a theoretical framework in terms of weak solutions is given in order to prove the existence and uniqueness of a solution of the semilinear boundary-value problem derived in the first chapter. Chapter 3 presents a different approach to the solvability theory of the reduced frequency-domain model. Here the boundary-value problem is reduced to finding solutions of a system of one-dimensional nonlinear Hammerstein integral equations. Chapter 4 describes an approach to the spectral analysis of the linearized system of integral equations. Chapters 5 and 6 are devoted to the numerical approximation of the solutions of the corresponding mathematical models. Chapter 7 contains detailed descriptions, discussions and evaluations of the numerical experiments. Finally, chapter 8 gives a summary of the results and an outlook for future work.
Physical Foundations of the Millimeter and Submillimeter Waves Technique V.1
Author: V. P. Ščestopalov
Publisher: VSP
ISBN: 9789067642156
Category : Science
Languages : en
Pages : 234
Book Description
The developments in physics, biology and astronomy, as well as radar and communication technology, remote sensing and spectroscopy have led to a sharp increase in the investigations of electromagnetic millimeter and submillimeter waves with the lengths 10--1 and 1--0.1 mm. These volumes reflect the results of extensive research in this field and attempt to destroy stereotypes established during the long years of large-scale modeling in the millimeter and submillimeter wavelength ranges and to develop new concepts. The first volume (Open Structures) deals with the results of theoretical and experimental studies of open electrodynamic structures (open waveguides, open resonators, diffractional gratings) allowing the determination of the characteristics of various devices used in millimeter and submillimeter technology. The second volume (Sources. Element Base. Radio Systems: Novel Scientific Trends) presents the problems of creating independent units and radiosystems of the millimeter and submillimeter wavelength ranges and the justification of their physical operating principles. This includes the mechanism of generating volume waves by electron flows moving close to a grating, excitation of fields in open resonators and waveguides with inclusion, and other phenomena.
Publisher: VSP
ISBN: 9789067642156
Category : Science
Languages : en
Pages : 234
Book Description
The developments in physics, biology and astronomy, as well as radar and communication technology, remote sensing and spectroscopy have led to a sharp increase in the investigations of electromagnetic millimeter and submillimeter waves with the lengths 10--1 and 1--0.1 mm. These volumes reflect the results of extensive research in this field and attempt to destroy stereotypes established during the long years of large-scale modeling in the millimeter and submillimeter wavelength ranges and to develop new concepts. The first volume (Open Structures) deals with the results of theoretical and experimental studies of open electrodynamic structures (open waveguides, open resonators, diffractional gratings) allowing the determination of the characteristics of various devices used in millimeter and submillimeter technology. The second volume (Sources. Element Base. Radio Systems: Novel Scientific Trends) presents the problems of creating independent units and radiosystems of the millimeter and submillimeter wavelength ranges and the justification of their physical operating principles. This includes the mechanism of generating volume waves by electron flows moving close to a grating, excitation of fields in open resonators and waveguides with inclusion, and other phenomena.
Canonical Problems in Scattering and Potential Theory Part II
Author: S.S. Vinogradov
Publisher: CRC Press
ISBN: 1000738132
Category : Mathematics
Languages : en
Pages : 393
Book Description
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers
Publisher: CRC Press
ISBN: 1000738132
Category : Mathematics
Languages : en
Pages : 393
Book Description
Although the analysis of scattering for closed bodies of simple geometric shape is well developed, structures with edges, cavities, or inclusions have seemed, until now, intractable to analytical methods. This two-volume set describes a breakthrough in analytical techniques for accurately determining diffraction from classes of canonical scatterers
Modeling and Analysis of Transient Processes in Open Resonant Structures
Author: Yuriy K. Sirenko
Publisher: Springer
ISBN: 0387325778
Category : Science
Languages : en
Pages : 367
Book Description
This book describes a systematic approach to scattering of transient fields which can be introduced in undergraduate or graduate courses. The initial boundary value problems considered describe the transient electromagnetic fields formed by open periodic, compact, and waveguide resonators. The methods developed and the mathematical and physical results obtained provide a basis on which a modern theory for the scattering of resonant non-harmonic waves can be developed.
Publisher: Springer
ISBN: 0387325778
Category : Science
Languages : en
Pages : 367
Book Description
This book describes a systematic approach to scattering of transient fields which can be introduced in undergraduate or graduate courses. The initial boundary value problems considered describe the transient electromagnetic fields formed by open periodic, compact, and waveguide resonators. The methods developed and the mathematical and physical results obtained provide a basis on which a modern theory for the scattering of resonant non-harmonic waves can be developed.
Journal of Communications Technology & Electronics
Author:
Publisher:
ISBN:
Category : Electronics
Languages : en
Pages : 378
Book Description
Publisher:
ISBN:
Category : Electronics
Languages : en
Pages : 378
Book Description
Layer Potential Techniques in Spectral Analysis
Author: Habib Ammari
Publisher: American Mathematical Soc.
ISBN: 0821847848
Category : Mathematics
Languages : en
Pages : 211
Book Description
Since the early part of the twentieth century, the use of integral equations has developed into a range of tools for the study of partial differential equations. This includes the use of single- and double-layer potentials to treat classical boundary value problems. The aim of this book is to give a self-contained presentation of an asymptotic theory for eigenvalue problems using layer potential techniques with applications in the fields of inverse problems, band gap structures, and optimal design, in particular the optimal design of photonic and phononic crystals. Throughout this book, it is shown how powerful the layer potentials techniques are for solving not only boundary value problems but also eigenvalue problems if they are combined with the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions. The general approach in this book is developed in detail for eigenvalue problems for the Laplacian and the Lame system in the following two situations: one under variation of domains or boundary conditions and the other due to the presence of inclusions. The book will be of interest to researchers and graduate students working in the fields of partial differential equations, integral equations, and inverse problems. Researchers in engineering and physics may also find this book helpful.
Publisher: American Mathematical Soc.
ISBN: 0821847848
Category : Mathematics
Languages : en
Pages : 211
Book Description
Since the early part of the twentieth century, the use of integral equations has developed into a range of tools for the study of partial differential equations. This includes the use of single- and double-layer potentials to treat classical boundary value problems. The aim of this book is to give a self-contained presentation of an asymptotic theory for eigenvalue problems using layer potential techniques with applications in the fields of inverse problems, band gap structures, and optimal design, in particular the optimal design of photonic and phononic crystals. Throughout this book, it is shown how powerful the layer potentials techniques are for solving not only boundary value problems but also eigenvalue problems if they are combined with the elegant theory of Gohberg and Sigal on meromorphic operator-valued functions. The general approach in this book is developed in detail for eigenvalue problems for the Laplacian and the Lame system in the following two situations: one under variation of domains or boundary conditions and the other due to the presence of inclusions. The book will be of interest to researchers and graduate students working in the fields of partial differential equations, integral equations, and inverse problems. Researchers in engineering and physics may also find this book helpful.