Author: Jie Shen
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Spectral Methods
Author: Jie Shen
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Publisher: Springer Science & Business Media
ISBN: 3540710418
Category : Mathematics
Languages : en
Pages : 481
Book Description
Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Spectral Methods And Their Applications
Author: Ben-yu Guo
Publisher: World Scientific
ISBN: 9814496642
Category : Mathematics
Languages : en
Pages : 359
Book Description
This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.
Publisher: World Scientific
ISBN: 9814496642
Category : Mathematics
Languages : en
Pages : 359
Book Description
This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.
Numerical Analysis of Spectral Methods
Author: David Gottlieb
Publisher: SIAM
ISBN: 0898710235
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Publisher: SIAM
ISBN: 0898710235
Category : Technology & Engineering
Languages : en
Pages : 167
Book Description
A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Spectral Methods in Fluid Dynamics
Author: Claudio Canuto
Publisher: Springer Science & Business Media
ISBN: 3642841082
Category : Science
Languages : en
Pages : 582
Book Description
This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use.
Publisher: Springer Science & Business Media
ISBN: 3642841082
Category : Science
Languages : en
Pages : 582
Book Description
This is a book about spectral methods for partial differential equations: when to use them, how to implement them, and what can be learned from their of spectral methods has evolved rigorous theory. The computational side vigorously since the early 1970s, especially in computationally intensive of the more spectacular applications are applications in fluid dynamics. Some of the power of these discussed here, first in general terms as examples of the methods have been methods and later in great detail after the specifics covered. This book pays special attention to those algorithmic details which are essential to successful implementation of spectral methods. The focus is on algorithms for fluid dynamical problems in transition, turbulence, and aero dynamics. This book does not address specific applications in meteorology, partly because of the lack of experience of the authors in this field and partly because of the coverage provided by Haltiner and Williams (1980). The success of spectral methods in practical computations has led to an increasing interest in their theoretical aspects, especially since the mid-1970s. Although the theory does not yet cover the complete spectrum of applications, the analytical techniques which have been developed in recent years have facilitated the examination of an increasing number of problems of practical interest. In this book we present a unified theory of the mathematical analysis of spectral methods and apply it to many of the algorithms in current use.
Spectral Methods in Chemistry and Physics
Author: Bernard Shizgal
Publisher: Springer
ISBN: 9401794545
Category : Science
Languages : en
Pages : 431
Book Description
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed. The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations. The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schrödinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials. The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared. MATLAB codes are provided for most of the numerical results reported in the book - see Link under 'Additional Information' on the the right-hand column.
Publisher: Springer
ISBN: 9401794545
Category : Science
Languages : en
Pages : 431
Book Description
This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed. The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations. The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schrödinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials. The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared. MATLAB codes are provided for most of the numerical results reported in the book - see Link under 'Additional Information' on the the right-hand column.
Spectral Methods for Uncertainty Quantification
Author: Olivier Le Maitre
Publisher: Springer Science & Business Media
ISBN: 9048135206
Category : Science
Languages : en
Pages : 542
Book Description
This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.
Publisher: Springer Science & Business Media
ISBN: 9048135206
Category : Science
Languages : en
Pages : 542
Book Description
This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.
Spectral Methods and Their Applications
Author: Benyu Guo
Publisher: World Scientific
ISBN: 9789810233334
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.
Publisher: World Scientific
ISBN: 9789810233334
Category : Mathematics
Languages : en
Pages : 364
Book Description
This book presents the basic algorithms, the main theoretical results, and some applications of spectral methods. Particular attention is paid to the applications of spectral methods to nonlinear problems arising in fluid dynamics, quantum mechanics, weather prediction, heat conduction and other fields.The book consists of three parts. The first part deals with orthogonal approximations in Sobolev spaces and the stability and convergence of approximations for nonlinear problems, as the mathematical foundation of spectral methods. In the second part, various spectral methods are described, with some applications. It includes Fourier spectral method, Legendre spectral method, Chebyshev spectral method, spectral penalty method, spectral vanishing viscosity method, spectral approximation of isolated solutions, multi-dimensional spectral method, spectral method for high-order equations, spectral-domain decomposition method and spectral multigrid method. The third part is devoted to some recent developments of spectral methods, such as mixed spectral methods, combined spectral methods and spectral methods on the surface.
Spectral Methods in MATLAB
Author: Lloyd N. Trefethen
Publisher: SIAM
ISBN: 0898714656
Category : Mathematics
Languages : en
Pages : 179
Book Description
Mathematics of Computing -- Numerical Analysis.
Publisher: SIAM
ISBN: 0898714656
Category : Mathematics
Languages : en
Pages : 179
Book Description
Mathematics of Computing -- Numerical Analysis.
Implementing Spectral Methods for Partial Differential Equations
Author: David A. Kopriva
Publisher: Springer Science & Business Media
ISBN: 9048122619
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Publisher: Springer Science & Business Media
ISBN: 9048122619
Category : Mathematics
Languages : en
Pages : 397
Book Description
This book explains how to solve partial differential equations numerically using single and multidomain spectral methods. It shows how only a few fundamental algorithms form the building blocks of any spectral code, even for problems with complex geometries.
Spectral Methods
Author: Claudio Canuto
Publisher: Springer Science & Business Media
ISBN: 3540307265
Category : Science
Languages : en
Pages : 585
Book Description
Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.
Publisher: Springer Science & Business Media
ISBN: 3540307265
Category : Science
Languages : en
Pages : 585
Book Description
Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.