Author: Quan Zou
Publisher: MDPI
ISBN: 3038970433
Category : Science
Languages : en
Pages : 305
Book Description
This book is a printed edition of the Special Issue "Special Protein Molecules Computational Identification" that was published in IJMS
Special Protein Molecules Computational Identification
Author: Quan Zou
Publisher: MDPI
ISBN: 3038970433
Category : Science
Languages : en
Pages : 305
Book Description
This book is a printed edition of the Special Issue "Special Protein Molecules Computational Identification" that was published in IJMS
Publisher: MDPI
ISBN: 3038970433
Category : Science
Languages : en
Pages : 305
Book Description
This book is a printed edition of the Special Issue "Special Protein Molecules Computational Identification" that was published in IJMS
Protein-Protein Interaction Networks
Author: Stefan Canzar
Publisher: Humana
ISBN: 9781493998753
Category : Science
Languages : en
Pages : 286
Book Description
This volume explores techniques that study interactions between proteins in different species, and combines them with context-specific data, analysis of omics datasets, and assembles individual interactions into higher-order semantic units, i.e., protein complexes and functional modules. The chapters in this book cover computational methods that solve diverse tasks such as the prediction of functional protein-protein interactions; the alignment-based comparison of interaction networks by SANA; using the RaptorX-ComplexContact webserver to predict inter-protein residue-residue contacts; the docking of alternative confirmations of proteins participating in binary interactions and the visually-guided selection of a docking model using COZOID; the detection of novel functional units by KeyPathwayMiner and how PathClass can use such de novo pathways to classify breast cancer subtypes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary hardware- and software, step-by-step, readily reproducible computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Protein-Protein Interaction Networks: Methods and Protocols is a valuable resource for both novice and expert researchers who are interested in learning more about this evolving field.
Publisher: Humana
ISBN: 9781493998753
Category : Science
Languages : en
Pages : 286
Book Description
This volume explores techniques that study interactions between proteins in different species, and combines them with context-specific data, analysis of omics datasets, and assembles individual interactions into higher-order semantic units, i.e., protein complexes and functional modules. The chapters in this book cover computational methods that solve diverse tasks such as the prediction of functional protein-protein interactions; the alignment-based comparison of interaction networks by SANA; using the RaptorX-ComplexContact webserver to predict inter-protein residue-residue contacts; the docking of alternative confirmations of proteins participating in binary interactions and the visually-guided selection of a docking model using COZOID; the detection of novel functional units by KeyPathwayMiner and how PathClass can use such de novo pathways to classify breast cancer subtypes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary hardware- and software, step-by-step, readily reproducible computational protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Protein-Protein Interaction Networks: Methods and Protocols is a valuable resource for both novice and expert researchers who are interested in learning more about this evolving field.
Structural Biology in Drug Discovery
Author: Jean-Paul Renaud
Publisher: John Wiley & Sons
ISBN: 1118900502
Category : Medical
Languages : en
Pages : 1437
Book Description
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Publisher: John Wiley & Sons
ISBN: 1118900502
Category : Medical
Languages : en
Pages : 1437
Book Description
With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning
Author: Wojciech Samek
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435
Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Publisher: Springer Nature
ISBN: 3030289540
Category : Computers
Languages : en
Pages : 435
Book Description
The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner. The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Bioinformatics and Drug Discovery
Author: Richard S. Larson
Publisher: Humana Press
ISBN: 9781493959297
Category : Science
Languages : en
Pages : 374
Book Description
Recent advances in drug discovery have been rapid. The second edition of Bioinformatics and Drug Discovery has been completely updated to include topics that range from new technologies in target identification, genomic analysis, cheminformatics, protein analysis, and network or pathway analysis. Each chapter provides an extended introduction that describes the theory and application of the technology. In the second part of each chapter, detailed procedures related to the use of these technologies and software have been incorporated. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Bioinformatics and Drug Discovery, Second Edition seeks to aid scientists in the further study of the rapidly expanding field of drug discovery.
Publisher: Humana Press
ISBN: 9781493959297
Category : Science
Languages : en
Pages : 374
Book Description
Recent advances in drug discovery have been rapid. The second edition of Bioinformatics and Drug Discovery has been completely updated to include topics that range from new technologies in target identification, genomic analysis, cheminformatics, protein analysis, and network or pathway analysis. Each chapter provides an extended introduction that describes the theory and application of the technology. In the second part of each chapter, detailed procedures related to the use of these technologies and software have been incorporated. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Bioinformatics and Drug Discovery, Second Edition seeks to aid scientists in the further study of the rapidly expanding field of drug discovery.
Computational Approaches
Author: Anna Maria Almerico
Publisher: Mdpi AG
ISBN: 9783036527796
Category : Science
Languages : en
Pages : 414
Book Description
This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs.
Publisher: Mdpi AG
ISBN: 9783036527796
Category : Science
Languages : en
Pages : 414
Book Description
This book is a collection of original research articles in the field of computer-aided drug design. It reports the use of current and validated computational approaches applied to drug discovery as well as the development of new computational tools to identify new and more potent drugs.
Computational Biophysics of Membrane Proteins
Author: Carmen Domene
Publisher: Royal Society of Chemistry
ISBN: 1782626697
Category : Science
Languages : en
Pages : 275
Book Description
Exploring current themes in modern computational and membrane protein biophysics, this book presents a comprehensive account of the fundamental principles underlying different methods and techniques used to describe the intriguing mechanisms by which membrane proteins function. The book discusses the experimental approaches employed to study these proteins, with chapters reviewing recent crucial structural advances that have allowed computational biophysicists to discern how these molecular machines work. The book then explores what computational methods are available to researchers and what these have taught us about three key families of membrane proteins: ion channels, transporters and receptors. The book is ideal for researchers in computational chemistry and computational biophysics.
Publisher: Royal Society of Chemistry
ISBN: 1782626697
Category : Science
Languages : en
Pages : 275
Book Description
Exploring current themes in modern computational and membrane protein biophysics, this book presents a comprehensive account of the fundamental principles underlying different methods and techniques used to describe the intriguing mechanisms by which membrane proteins function. The book discusses the experimental approaches employed to study these proteins, with chapters reviewing recent crucial structural advances that have allowed computational biophysicists to discern how these molecular machines work. The book then explores what computational methods are available to researchers and what these have taught us about three key families of membrane proteins: ion channels, transporters and receptors. The book is ideal for researchers in computational chemistry and computational biophysics.
Protein Engineering
Author: Huimin Zhao
Publisher: John Wiley & Sons
ISBN: 3527344705
Category : Science
Languages : en
Pages : 41
Book Description
A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
Publisher: John Wiley & Sons
ISBN: 3527344705
Category : Science
Languages : en
Pages : 41
Book Description
A one-stop reference that reviews protein design strategies to applications in industrial and medical biotechnology Protein Engineering: Tools and Applications is a comprehensive resource that offers a systematic and comprehensive review of the most recent advances in the field, and contains detailed information on the methodologies and strategies behind these approaches. The authors—noted experts on the topic—explore the distinctive advantages and disadvantages of the presented methodologies and strategies in a targeted and focused manner that allows for the adaptation and implementation of the strategies for new applications. The book contains information on the directed evolution, rational design, and semi-rational design of proteins and offers a review of the most recent applications in industrial and medical biotechnology. This important book: Covers technologies and methodologies used in protein engineering Includes the strategies behind the approaches, designed to help with the adaptation and implementation of these strategies for new applications Offers a comprehensive and thorough treatment of protein engineering from primary strategies to applications in industrial and medical biotechnology Presents cutting edge advances in the continuously evolving field of protein engineering Written for students and professionals of bioengineering, biotechnology, biochemistry, Protein Engineering: Tools and Applications offers an essential resource to the design strategies in protein engineering and reviews recent applications.
Protein-Protein Interactions
Author: Weibo Cai
Publisher: BoD – Books on Demand
ISBN: 9535103970
Category : Science
Languages : en
Pages : 488
Book Description
Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.
Publisher: BoD – Books on Demand
ISBN: 9535103970
Category : Science
Languages : en
Pages : 488
Book Description
Proteins are indispensable players in virtually all biological events. The functions of proteins are coordinated through intricate regulatory networks of transient protein-protein interactions (PPIs). To predict and/or study PPIs, a wide variety of techniques have been developed over the last several decades. Many in vitro and in vivo assays have been implemented to explore the mechanism of these ubiquitous interactions. However, despite significant advances in these experimental approaches, many limitations exist such as false-positives/false-negatives, difficulty in obtaining crystal structures of proteins, challenges in the detection of transient PPI, among others. To overcome these limitations, many computational approaches have been developed which are becoming increasingly widely used to facilitate the investigation of PPIs. This book has gathered an ensemble of experts in the field, in 22 chapters, which have been broadly categorized into Computational Approaches, Experimental Approaches, and Others.
Protein-protein Complexes
Author: Martin Zacharias
Publisher: World Scientific
ISBN: 1848163398
Category : Science
Languages : en
Pages : 401
Book Description
Given the immense progress achieved in elucidating protein-protein complex structures and in the field of protein interaction modeling, there is great demand for a book that gives interested researchers/students a comprehensive overview of the field. This book does just that. It focuses on what can be learned about protein-protein interactions from the analysis of protein-protein complex structures and interfaces. What are the driving forces for protein-protein association? How can we extract the mechanism of specific recognition from studying protein-protein interfaces? How can this knowledge be used to predict and design protein-protein interactions (interaction regions and complex structures)? What methods are currently employed to design protein-protein interactions, and how can we influence protein-protein interactions by mutagenesis and small-molecule drugs or peptide mimetics?The book consists of about 15 review chapters, written by experts, on the characterization of protein-protein interfaces, structure determination of protein complexes (by NMR and X-ray), theory of protein-protein binding, dynamics of protein interfaces, bioinformatics methods to predict interaction regions, and prediction of protein-protein complex structures (docking and homology modeling of complexes, etc.) and design of protein-protein interactions. It serves as a bridge between studying/analyzing protein-protein complex structures (interfaces), predicting interactions, and influencing/designing interactions.
Publisher: World Scientific
ISBN: 1848163398
Category : Science
Languages : en
Pages : 401
Book Description
Given the immense progress achieved in elucidating protein-protein complex structures and in the field of protein interaction modeling, there is great demand for a book that gives interested researchers/students a comprehensive overview of the field. This book does just that. It focuses on what can be learned about protein-protein interactions from the analysis of protein-protein complex structures and interfaces. What are the driving forces for protein-protein association? How can we extract the mechanism of specific recognition from studying protein-protein interfaces? How can this knowledge be used to predict and design protein-protein interactions (interaction regions and complex structures)? What methods are currently employed to design protein-protein interactions, and how can we influence protein-protein interactions by mutagenesis and small-molecule drugs or peptide mimetics?The book consists of about 15 review chapters, written by experts, on the characterization of protein-protein interfaces, structure determination of protein complexes (by NMR and X-ray), theory of protein-protein binding, dynamics of protein interfaces, bioinformatics methods to predict interaction regions, and prediction of protein-protein complex structures (docking and homology modeling of complexes, etc.) and design of protein-protein interactions. It serves as a bridge between studying/analyzing protein-protein complex structures (interfaces), predicting interactions, and influencing/designing interactions.