Author: Deren Li
Publisher: Springer
ISBN: 3662485389
Category : Computers
Languages : en
Pages : 329
Book Description
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.
Spatial Data Mining
Author: Deren Li
Publisher: Springer
ISBN: 3662485389
Category : Computers
Languages : en
Pages : 329
Book Description
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.
Publisher: Springer
ISBN: 3662485389
Category : Computers
Languages : en
Pages : 329
Book Description
· This book is an updated version of a well-received book previously published in Chinese by Science Press of China (the first edition in 2006 and the second in 2013). It offers a systematic and practical overview of spatial data mining, which combines computer science and geo-spatial information science, allowing each field to profit from the knowledge and techniques of the other. To address the spatiotemporal specialties of spatial data, the authors introduce the key concepts and algorithms of the data field, cloud model, mining view, and Deren Li methods. The data field method captures the interactions between spatial objects by diffusing the data contribution from a universe of samples to a universe of population, thereby bridging the gap between the data model and the recognition model. The cloud model is a qualitative method that utilizes quantitative numerical characters to bridge the gap between pure data and linguistic concepts. The mining view method discriminates the different requirements by using scale, hierarchy, and granularity in order to uncover the anisotropy of spatial data mining. The Deren Li method performs data preprocessing to prepare it for further knowledge discovery by selecting a weight for iteration in order to clean the observed spatial data as much as possible. In addition to the essential algorithms and techniques, the book provides application examples of spatial data mining in geographic information science and remote sensing. The practical projects include spatiotemporal video data mining for protecting public security, serial image mining on nighttime lights for assessing the severity of the Syrian Crisis, and the applications in the government project ‘the Belt and Road Initiatives’.
Quality Aspects in Spatial Data Mining
Author: Alfred Stein
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 392
Book Description
In this cohesive collection of peer-reviewed chapters, field authorities present the latest field advancements and cover essential areas such as data acquisition, geoinformation theory, spatial statistics, and dissemination. Each chapter opens with an editorial preview of each topic from a conceptual, applied, and methodological point of view, making it easier for researchers to judge which information is most beneficial to their work. Under the editorial guidance of internationally respected geoinformatics experts, the volume addresses quality aspects in the entire spatial data mining process, from data acquisition to end user.
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 392
Book Description
In this cohesive collection of peer-reviewed chapters, field authorities present the latest field advancements and cover essential areas such as data acquisition, geoinformation theory, spatial statistics, and dissemination. Each chapter opens with an editorial preview of each topic from a conceptual, applied, and methodological point of view, making it easier for researchers to judge which information is most beneficial to their work. Under the editorial guidance of internationally respected geoinformatics experts, the volume addresses quality aspects in the entire spatial data mining process, from data acquisition to end user.
Geographic Data Mining and Knowledge Discovery
Author: Harvey J. Miller
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 408
Book Description
Advances in automated data collection are creating massive databases and a whole new field, Knowledge Discovery Databases (KDD), has emerged to develop new methods of managing and exploiting them. Geographic Data Mining and Knowledge Discovery is the interrogation of large databases using efficient computational methods. The unique challenges brought about by the storing of massive geographical databases - from high resolution satellite-based systems to data from intelligent transportation systems, for example - has led to the field of Geographical Knowledge Discovery (GKD). Geographic or spatial data mining is the exploration of these geographical information databases. Developed out of contributions to the highly-respected Varenius Project in 1999, this collection will be the definitive volume focusing on GKD and addresses the special challenges to be found in knowledge discovery and data mining from geographic databases.
Publisher: CRC Press
ISBN:
Category : Business & Economics
Languages : en
Pages : 408
Book Description
Advances in automated data collection are creating massive databases and a whole new field, Knowledge Discovery Databases (KDD), has emerged to develop new methods of managing and exploiting them. Geographic Data Mining and Knowledge Discovery is the interrogation of large databases using efficient computational methods. The unique challenges brought about by the storing of massive geographical databases - from high resolution satellite-based systems to data from intelligent transportation systems, for example - has led to the field of Geographical Knowledge Discovery (GKD). Geographic or spatial data mining is the exploration of these geographical information databases. Developed out of contributions to the highly-respected Varenius Project in 1999, this collection will be the definitive volume focusing on GKD and addresses the special challenges to be found in knowledge discovery and data mining from geographic databases.
Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques
Author: Hamid Reza Pourghasemi
Publisher: Springer
ISBN: 3319733834
Category : Nature
Languages : en
Pages : 311
Book Description
This edited volume assesses capabilities of data mining algorithms for spatial modeling of natural hazards in different countries based on a collection of essays written by experts in the field. The book is organized on different hazards including landslides, flood, forest fire, land subsidence, earthquake, and gully erosion. Chapters were peer-reviewed by recognized scholars in the field of natural hazards research. Each chapter provides an overview on the topic, methods applied, and discusses examples used. The concepts and methods are explained at a level that allows undergraduates to understand and other readers learn through examples. This edited volume is shaped and structured to provide the reader with a comprehensive overview of all covered topics. It serves as a reference for researchers from different fields including land surveying, remote sensing, cartography, GIS, geophysics, geology, natural resources, and geography. It also serves as a guide for researchers, students, organizations, and decision makers active in land use planning and hazard management.
Publisher: Springer
ISBN: 3319733834
Category : Nature
Languages : en
Pages : 311
Book Description
This edited volume assesses capabilities of data mining algorithms for spatial modeling of natural hazards in different countries based on a collection of essays written by experts in the field. The book is organized on different hazards including landslides, flood, forest fire, land subsidence, earthquake, and gully erosion. Chapters were peer-reviewed by recognized scholars in the field of natural hazards research. Each chapter provides an overview on the topic, methods applied, and discusses examples used. The concepts and methods are explained at a level that allows undergraduates to understand and other readers learn through examples. This edited volume is shaped and structured to provide the reader with a comprehensive overview of all covered topics. It serves as a reference for researchers from different fields including land surveying, remote sensing, cartography, GIS, geophysics, geology, natural resources, and geography. It also serves as a guide for researchers, students, organizations, and decision makers active in land use planning and hazard management.
Data Mining for Scientific and Engineering Applications
Author: R.L. Grossman
Publisher: Springer Science & Business Media
ISBN: 9781402001147
Category : Computers
Languages : en
Pages : 632
Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Publisher: Springer Science & Business Media
ISBN: 9781402001147
Category : Computers
Languages : en
Pages : 632
Book Description
Advances in technology are making massive data sets common in many scientific disciplines, such as astronomy, medical imaging, bio-informatics, combinatorial chemistry, remote sensing, and physics. To find useful information in these data sets, scientists and engineers are turning to data mining techniques. This book is a collection of papers based on the first two in a series of workshops on mining scientific datasets. It illustrates the diversity of problems and application areas that can benefit from data mining, as well as the issues and challenges that differentiate scientific data mining from its commercial counterpart. While the focus of the book is on mining scientific data, the work is of broader interest as many of the techniques can be applied equally well to data arising in business and web applications. Audience: This work would be an excellent text for students and researchers who are familiar with the basic principles of data mining and want to learn more about the application of data mining to their problem in science or engineering.
Automating the Analysis of Spatial Grids
Author: Valliappa Lakshmanan
Publisher: Springer Science & Business Media
ISBN: 9400740751
Category : Science
Languages : en
Pages : 328
Book Description
The ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and detect patterns in geospatial data is increasingly important. This book provides students with a foundation in topics of digital image processing and data mining as applied to geospatial datasets. The aim is for readers to be able to devise and implement automated techniques to extract information from spatial grids such as radar, satellite or high-resolution survey imagery.
Publisher: Springer Science & Business Media
ISBN: 9400740751
Category : Science
Languages : en
Pages : 328
Book Description
The ability to create automated algorithms to process gridded spatial data is increasingly important as remotely sensed datasets increase in volume and frequency. Whether in business, social science, ecology, meteorology or urban planning, the ability to create automated applications to analyze and detect patterns in geospatial data is increasingly important. This book provides students with a foundation in topics of digital image processing and data mining as applied to geospatial datasets. The aim is for readers to be able to devise and implement automated techniques to extract information from spatial grids such as radar, satellite or high-resolution survey imagery.
Research and Development in Knowledge Discovery and Data Mining
Author: Xindong Wu
Publisher:
ISBN: 9783662174012
Category :
Languages : en
Pages : 452
Book Description
Publisher:
ISBN: 9783662174012
Category :
Languages : en
Pages : 452
Book Description
Data Mining
Author: Charu C. Aggarwal
Publisher: Springer
ISBN: 3319141422
Category : Computers
Languages : en
Pages : 746
Book Description
This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago
Publisher: Springer
ISBN: 3319141422
Category : Computers
Languages : en
Pages : 746
Book Description
This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues. It goes beyond the traditional focus on data mining problems to introduce advanced data types such as text, time series, discrete sequences, spatial data, graph data, and social networks. Until now, no single book has addressed all these topics in a comprehensive and integrated way. The chapters of this book fall into one of three categories: Fundamental chapters: Data mining has four main problems, which correspond to clustering, classification, association pattern mining, and outlier analysis. These chapters comprehensively discuss a wide variety of methods for these problems. Domain chapters: These chapters discuss the specific methods used for different domains of data such as text data, time-series data, sequence data, graph data, and spatial data. Application chapters: These chapters study important applications such as stream mining, Web mining, ranking, recommendations, social networks, and privacy preservation. The domain chapters also have an applied flavor. Appropriate for both introductory and advanced data mining courses, Data Mining: The Textbook balances mathematical details and intuition. It contains the necessary mathematical details for professors and researchers, but it is presented in a simple and intuitive style to improve accessibility for students and industrial practitioners (including those with a limited mathematical background). Numerous illustrations, examples, and exercises are included, with an emphasis on semantically interpretable examples. Praise for Data Mining: The Textbook - “As I read through this book, I have already decided to use it in my classes. This is a book written by an outstanding researcher who has made fundamental contributions to data mining, in a way that is both accessible and up to date. The book is complete with theory and practical use cases. It’s a must-have for students and professors alike!" -- Qiang Yang, Chair of Computer Science and Engineering at Hong Kong University of Science and Technology "This is the most amazing and comprehensive text book on data mining. It covers not only the fundamental problems, such as clustering, classification, outliers and frequent patterns, and different data types, including text, time series, sequences, spatial data and graphs, but also various applications, such as recommenders, Web, social network and privacy. It is a great book for graduate students and researchers as well as practitioners." -- Philip S. Yu, UIC Distinguished Professor and Wexler Chair in Information Technology at University of Illinois at Chicago
IT Roadmap to a Geospatial Future
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309087384
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
A grand challenge for science is to understand the human implications of global environmental change and to help society cope with those changes. Virtually all the scientific questions associated with this challenge depend on geospatial information (geoinformation) and on the ability of scientists, working individually and in groups, to interact with that information in flexible and increasingly complex ways. Another grand challenge is how to respond to calamities-terrorist activities, other human-induced crises, and natural disasters. Much of the information that underpins emergency preparedness, response, recovery, and mitigation is geospatial in nature. In terrorist situations, for example, origins and destinations of phone calls and e-mail messages, travel patterns of individuals, dispersal patterns of airborne chemicals, assessment of places at risk, and the allocation of resources all involve geospatial information. Much of the work addressing environment- and emergency-related concerns will depend on how productively humans are able to integrate, distill, and correlate a wide range of seemingly unrelated information. In addition to critical advances in location-aware computing, databases, and data mining methods, advances in the human-computer interface will couple new computational capabilities with human cognitive capabilities. This report outlines an interdisciplinary research roadmap at the intersection of computer science and geospatial information science. The report was developed by a committee convened by the Computer Science and Telecommunications Board of the National Research Council.
Publisher: National Academies Press
ISBN: 0309087384
Category : Technology & Engineering
Languages : en
Pages : 136
Book Description
A grand challenge for science is to understand the human implications of global environmental change and to help society cope with those changes. Virtually all the scientific questions associated with this challenge depend on geospatial information (geoinformation) and on the ability of scientists, working individually and in groups, to interact with that information in flexible and increasingly complex ways. Another grand challenge is how to respond to calamities-terrorist activities, other human-induced crises, and natural disasters. Much of the information that underpins emergency preparedness, response, recovery, and mitigation is geospatial in nature. In terrorist situations, for example, origins and destinations of phone calls and e-mail messages, travel patterns of individuals, dispersal patterns of airborne chemicals, assessment of places at risk, and the allocation of resources all involve geospatial information. Much of the work addressing environment- and emergency-related concerns will depend on how productively humans are able to integrate, distill, and correlate a wide range of seemingly unrelated information. In addition to critical advances in location-aware computing, databases, and data mining methods, advances in the human-computer interface will couple new computational capabilities with human cognitive capabilities. This report outlines an interdisciplinary research roadmap at the intersection of computer science and geospatial information science. The report was developed by a committee convened by the Computer Science and Telecommunications Board of the National Research Council.
Spatial Database Systems
Author: Albert K.W. Yeung
Publisher: Springer Science & Business Media
ISBN: 1402053924
Category : Science
Languages : en
Pages : 555
Book Description
This book places spatial data within the broader domain of information technology (IT) while providing a comprehensive and coherent explanation of the guiding principles, methods, implementation and operational management of spatial databases within the workplace. The text explains the key concepts, issues and processes of spatial data implementation and provides a holistic management perspective.
Publisher: Springer Science & Business Media
ISBN: 1402053924
Category : Science
Languages : en
Pages : 555
Book Description
This book places spatial data within the broader domain of information technology (IT) while providing a comprehensive and coherent explanation of the guiding principles, methods, implementation and operational management of spatial databases within the workplace. The text explains the key concepts, issues and processes of spatial data implementation and provides a holistic management perspective.