Basic Space Plasma Physics (Revised Edition)

Basic Space Plasma Physics (Revised Edition) PDF Author: Wolfgang Baumjohann
Publisher: World Scientific Publishing Company
ISBN: 1911298682
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
This textbook begins with a description of the Earth's plasma environment, followed by the derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Also discussed are the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling.The second half of the book presents a more theoretical foundation of plasma physics, starting with kinetic theory. Introducing moments of distribution function permits the derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples, and finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.This revised edition seamlessly integrates new sections on magnetopause reconstruction, as well as instability theory and thermal fluctuations based on new developments in space physics. Applications such as the important problems of collisionless reconnection and collisionless shocks are covered, and some problems have also been included at the end of each chapter.

Basic Space Plasma Physics (Revised Edition)

Basic Space Plasma Physics (Revised Edition) PDF Author: Wolfgang Baumjohann
Publisher: World Scientific Publishing Company
ISBN: 1911298682
Category : Science
Languages : en
Pages : 496

Get Book Here

Book Description
This textbook begins with a description of the Earth's plasma environment, followed by the derivation of single particle motions in electromagnetic fields, with applications to the Earth's magnetosphere. Also discussed are the origin and effects of collisions and conductivities, formation of the ionosphere, magnetospheric convection and dynamics, and solar wind-magnetosphere coupling.The second half of the book presents a more theoretical foundation of plasma physics, starting with kinetic theory. Introducing moments of distribution function permits the derivation of the fluid equations, followed by an analysis of fluid boundaries, with the Earth's magnetopause and bow shock as examples, and finally, fluid and kinetic theory are applied to derive the relevant wave modes in a plasma.This revised edition seamlessly integrates new sections on magnetopause reconstruction, as well as instability theory and thermal fluctuations based on new developments in space physics. Applications such as the important problems of collisionless reconnection and collisionless shocks are covered, and some problems have also been included at the end of each chapter.

Theory of Space Plasma Microinstabilities

Theory of Space Plasma Microinstabilities PDF Author: S. Peter Gary
Publisher: Cambridge University Press
ISBN: 9780521431675
Category : Science
Languages : en
Pages : 206

Get Book Here

Book Description
This book describes the linear theory of waves and instabilities that propagate in a collisionless plasma.

Introduction to Plasma Physics

Introduction to Plasma Physics PDF Author: Donald A. Gurnett
Publisher: Cambridge University Press
ISBN: 1107027373
Category : Science
Languages : en
Pages : 535

Get Book Here

Book Description
Introducing the principles and applications of plasma physics, this new edition is ideal as an advanced undergraduate or graduate-level text.

An Introduction to Plasma Physics and Its Space Applications, Volume 1

An Introduction to Plasma Physics and Its Space Applications, Volume 1 PDF Author: Luis Conde
Publisher: Morgan & Claypool Publishers
ISBN: 1643271741
Category : Science
Languages : en
Pages : 130

Get Book Here

Book Description
The growing number of scientific and technological applications of plasma physics in the field of Aerospace Engineering requires that graduate students and professionals understand their principles. This introductory book is the expanded version of class notes of lectures I taught for several years to students of Aerospace Engineering and Physics. It is intended as a reading guide, addressed to students and non-specialists to tackle later with more advanced texts. To make the subject more accessible the book does not follow the usual organization of standard textbooks in this field and is divided in two parts. The first introduces the basic kinetic theory (molecular collisions, mean free path, etc.) of neutral gases in equilibrium in connection to the undergraduate physics courses. The basic properties of ionized gases and plasmas (Debye length, plasma frequencies, etc.) are addressed in relation to their equilibrium states and the collisional processes at the microscopic level. The physical description of short and long-range (Coulomb) collisions and the more relevant collisions (elementary processes) between electrons' ions and neutral atoms or molecules are discussed. The second part introduces the physical description of plasmas as a statistical system of interacting particles introducing advanced concepts of kinetic theory, (non-equilibrium distribution functions, Boltzmann collision operator, etc). The fluid transport equations for plasmas of electron ions and neutral atoms and the hydrodynamic models of interest in space science and plasma technology are derived. The plasma production in the laboratory in the context of the physics of electric breakdown is also discussed. Finally, among the myriad of aerospace applications of plasma physics, the low pressure microwave electron multipactor breakdown and plasma thrusters for space propulsion are presented in two separate chapters.

Cosmic Plasma

Cosmic Plasma PDF Author: H. Alfvèn
Publisher: Springer Science & Business Media
ISBN: 9400983743
Category : Science
Languages : en
Pages : 179

Get Book Here

Book Description
The general background of this monograph and the aim of it is described in detail in Chapter I. As stated in 1.7 it is written according to the principle that "when rigour appears to conflict with simplicity, simplicity is given preference", which means that it is intended for a rather broad public. Not only graduate students but also advanced undergraduates should be able to understand at least most of it. This monograph is the result of many years of inspiring discussions with a number of colleagues, for which I want to thank them very much. Especially I should mention the groups in Stockholm and La Jolla: in Stockholm, Dr Carl-Gunne Flilthammar and many of his collaborators, including Drs Lars Block, Per Carlqvist, Lennart lindberg, Michael Raadu, Staffan Torven, Miroslav Babic, and Itlgvar Axniis, and further, Drs Bo Lehnert and Bjorn Bonnevier, all at the Royal Institute of Technology. Of other col leagues in Sweden, I should mention Dr Bertel Laurent, Stockholm University, Dr Aina Elvius, The Stockholm Observatory, and Dr Bengt Hultqvist, Kiruna. In La Jolla my thanks go first of all to Dr Gustaf Arrhenius, who once invited me to La Jolla, which was the start of a most interesting collaboration; further, to Dr W.B.

Introduction to Plasma Physics

Introduction to Plasma Physics PDF Author: D. A. Gurnett
Publisher: Cambridge University Press
ISBN: 9780521364836
Category : Science
Languages : en
Pages : 468

Get Book Here

Book Description
Advanced undergraduate/beginning graduate text on space and laboratory plasma physics.

Kappa Distributions

Kappa Distributions PDF Author: George Livadiotis
Publisher: Elsevier
ISBN: 0128046392
Category : Science
Languages : en
Pages : 740

Get Book Here

Book Description
Kappa Distributions: Theory and Applications in Plasmas presents the theoretical developments of kappa distributions, their applications in plasmas, and how they affect the underpinnings of our understanding of space and plasma physics, astrophysics, and statistical mechanics/thermodynamics. Separated into three major parts, the book covers theoretical methods, analytical methods in plasmas, and applications in space plasmas. The first part of the book focuses on basic aspects of the statistical theory of kappa distributions, beginning with their connection to the solid backgrounds of non-extensive statistical mechanics. The book then moves on to plasma physics, and is devoted to analytical methods related to kappa distributions on various basic plasma topics, spanning linear/nonlinear plasma waves, solitons, shockwaves, and dusty plasmas. The final part of the book deals with applications in space plasmas, focusing on applications of theoretical and analytical developments in space plasmas from the heliosphere and beyond, in other astrophysical plasmas. Kappa Distributions is ideal for space, plasma, and statistical physicists; geophysicists, especially of the upper atmosphere; Earth and planetary scientists; and astrophysicists. - Answers important questions, such as how plasma waves are affected by kappa distributions and how solar wind, magnetospheres, and other geophysical, space, and astrophysical plasmas can be modeled using kappa distributions - Presents the features of kappa distributions in the context of plasmas, including how kappa indices, temperatures, and densities vary among the species populations in different plasmas - Provides readers with the information they need to decide which specific formula of kappa distribution should be used for a certain occasion and system (toolbox)

Space Plasma Simulation

Space Plasma Simulation PDF Author: Jörg Büchner
Publisher: Springer Science & Business Media
ISBN: 3540006982
Category : Science
Languages : en
Pages : 363

Get Book Here

Book Description
The aim of this book is twofold: to provide an introduction for newcomers to state of the art computer simulation techniques in space plasma physics and an overview of current developments. Computer simulation has reached a stage where it can be a highly useful tool for guiding theory and for making predictions of space plasma phenomena, ranging from microscopic to global scales. The various articles are arranged, as much as possible, according to the - derlying simulation technique, starting with the technique that makes the least number of assumptions: a fully kinetic approach which solves the coupled set of Maxwell’s equations for the electromagnetic ?eld and the equations of motion for a very large number of charged particles (electrons and ions) in this ?eld. Clearly, this is also the computationally most demanding model. Therefore, even with present day high performance computers, it is the most restrictive in terms of the space and time domain and the range of particle parameters that can be covered by the simulation experiments. It still makes sense, therefore, to also use models, which due to their simp- fying assumptions, seem less realistic, although the e?ect of these assumptions on the outcome of the simulation experiments needs to be carefully assessed.

Plasma Physics

Plasma Physics PDF Author: Alexander Piel
Publisher: Springer
ISBN: 9783319875538
Category : Science
Languages : en
Pages : 463

Get Book Here

Book Description
The enlarged new edition of this textbook provides a comprehensive introduction to the basic processes in plasmas and demonstrates that the same fundamental concepts describe cold gas-discharge plasmas, space plasmas, and hot fusion plasmas. Starting from particle drifts in magnetic fields, the principles of magnetic confinement fusion are explained and compared with laser fusion. Collective processes are discussed in terms of plasma waves and instabilities. The concepts of plasma description by magnetohydrodynamics, kinetic theory, and particle simulation are stepwise introduced. Space charge effects in sheath regions, double layers and plasma diodes are given the necessary attention. The novel fundamental mechanisms of dusty plasmas are explored and integrated into the framework of conventional plasmas. The book concludes with a concise description of modern plasma discharges. Written by an internationally renowned researcher in experimental plasma physics, the text keeps the mathematical apparatus simple and emphasizes the underlying concepts. The guidelines of plasma physics are illustrated by a host of practical examples, preferentially from plasma diagnostics. There, Langmuir probe methods, laser interferometry, ionospheric sounding, Faraday rotation, and diagnostics of dusty plasmas are discussed. Though primarily addressing students in plasma physics, the book is easily accessible for researchers in neighboring disciplines, such as space science, astrophysics, material science, applied physics, and electrical engineering. This second edition has been thoroughly revised and contains substantially enlarged chapters on plasma diagnostics, dusty plasmas and plasma discharges. Probe techniques have been rearranged into basic theory and a host of practical examples for probe techniques in dc, rf, and space plasmas. New topics in dusty plasmas, such as plasma crystals, Yukawa balls, phase transitions and attractive forces have been adopted. The chapter on plasma discharges now contains a new section on conventional and high-power impulse magnetron sputtering. The recently discovered electrical asymmetry effect in capacitive rf-discharges is described. The text is based on an introductory course to plasma physics and advanced courses in plasma diagnostics, dusty plasmas, and plasma waves, which the author has taught at Kiel University for three decades. The pedagogical approach combines detailed explanations, a large number of illustrative figures, short summaries of the basics at the end of each chapter, and a selection of problems with detailed solutions.

Physics of Collisionless Shocks

Physics of Collisionless Shocks PDF Author: André Balogh
Publisher: Springer Science & Business Media
ISBN: 1461460999
Category : Science
Languages : en
Pages : 503

Get Book Here

Book Description
The present book provides a contemporary systematic treatment of shock waves in high-temperature collisionless plasmas as are encountered in near Earth space and in Astrophysics. It consists of two parts. Part I develops the complete theory of shocks in dilute hot plasmas under the assumption of absence of collisions among the charged particles when the interaction is mediated solely by the self-consistent electromagnetic fields. Such shocks are naturally magnetised implying that the magnetic field plays an important role in their evolution and dynamics. This part treats subcritical shocks which dissipate flow energy by generating anomalous resistance or viscosity. The main emphasis is, however, on super-critical shocks where the anomalous dissipation is insufficient to retard the upstream flow. These shocks, depending on the direction of the upstream magnetic field, are distinguished as quasi-perpendicular and quasi-parallel shocks which exhibit different behaviours, reflecting particles back upstream and generating high electromagnetic wave intensities. Particle acceleration and turbulence at such shocks become possible and important. Part II treats planetary bow shocks and the famous Heliospheric Termination shock as examples of two applications of the theory developed in part I.