Author: Ettore Perozzi
Publisher: Springer Science & Business Media
ISBN: 1441903488
Category : Science
Languages : en
Pages : 265
Book Description
This book presents an overview of the outcomes resulting from applying the dynamical systems approach to space mission design, a topic referred to as "Space Manifold Dynamics" (SMD). It is a natural follow-on to the international workshop "Novel Spaceways for Scientific and Exploration Missions," which was held in October 2007 at the Telespazio Fucino Space Centre (Italy) under the auspices of the Space OPS Academy. The benefits and drawbacks of using the Lagrangian points and the associated trajectories for present and future space missions are discussed. The related methods and algorithms are also described in detail. Each topic is presented in articles that were written as far as possible to be self consistent; the use of introductory sections and of extended explanations is included in order to address the different communities potentially interested in SMD: space science, the aerospace industry, manned and unmanned exploration, celestial mechanics, and flight dynamics.
Space Manifold Dynamics
Author: Ettore Perozzi
Publisher: Springer Science & Business Media
ISBN: 1441903488
Category : Science
Languages : en
Pages : 265
Book Description
This book presents an overview of the outcomes resulting from applying the dynamical systems approach to space mission design, a topic referred to as "Space Manifold Dynamics" (SMD). It is a natural follow-on to the international workshop "Novel Spaceways for Scientific and Exploration Missions," which was held in October 2007 at the Telespazio Fucino Space Centre (Italy) under the auspices of the Space OPS Academy. The benefits and drawbacks of using the Lagrangian points and the associated trajectories for present and future space missions are discussed. The related methods and algorithms are also described in detail. Each topic is presented in articles that were written as far as possible to be self consistent; the use of introductory sections and of extended explanations is included in order to address the different communities potentially interested in SMD: space science, the aerospace industry, manned and unmanned exploration, celestial mechanics, and flight dynamics.
Publisher: Springer Science & Business Media
ISBN: 1441903488
Category : Science
Languages : en
Pages : 265
Book Description
This book presents an overview of the outcomes resulting from applying the dynamical systems approach to space mission design, a topic referred to as "Space Manifold Dynamics" (SMD). It is a natural follow-on to the international workshop "Novel Spaceways for Scientific and Exploration Missions," which was held in October 2007 at the Telespazio Fucino Space Centre (Italy) under the auspices of the Space OPS Academy. The benefits and drawbacks of using the Lagrangian points and the associated trajectories for present and future space missions are discussed. The related methods and algorithms are also described in detail. Each topic is presented in articles that were written as far as possible to be self consistent; the use of introductory sections and of extended explanations is included in order to address the different communities potentially interested in SMD: space science, the aerospace industry, manned and unmanned exploration, celestial mechanics, and flight dynamics.
Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds
Author: Taeyoung Lee
Publisher: Springer
ISBN: 3319569538
Category : Mathematics
Languages : en
Pages : 561
Book Description
This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.
Publisher: Springer
ISBN: 3319569538
Category : Mathematics
Languages : en
Pages : 561
Book Description
This book provides an accessible introduction to the variational formulation of Lagrangian and Hamiltonian mechanics, with a novel emphasis on global descriptions of the dynamics, which is a significant conceptual departure from more traditional approaches based on the use of local coordinates on the configuration manifold. In particular, we introduce a general methodology for obtaining globally valid equations of motion on configuration manifolds that are Lie groups, homogeneous spaces, and embedded manifolds, thereby avoiding the difficulties associated with coordinate singularities. The material is presented in an approachable fashion by considering concrete configuration manifolds of increasing complexity, which then motivates and naturally leads to the more general formulation that follows. Understanding of the material is enhanced by numerous in-depth examples throughout the book, culminating in non-trivial applications involving multi-body systems. This book is written for a general audience of mathematicians, engineers, and physicists with a basic knowledge of mechanics. Some basic background in differential geometry is helpful, but not essential, as the relevant concepts are introduced in the book, thereby making the material accessible to a broad audience, and suitable for either self-study or as the basis for a graduate course in applied mathematics, engineering, or physics.
Dynamical Systems
Author: Wang Sang Koon
Publisher: Springer
ISBN: 9780387495156
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier.
Publisher: Springer
ISBN: 9780387495156
Category : Mathematics
Languages : en
Pages : 336
Book Description
This book considers global solutions to the restricted three-body problem from a geometric point of view. The authors seek dynamical channels in the phase space which wind around the planets and moons and naturally connect them. These low energy passageways could slash the amount of fuel spacecraft need to explore and develop our solar system. In order to effectively exploit these passageways, the book addresses the global transport. It goes beyond the traditional scope of libration point mission design, developing tools for the design of trajectories which take full advantage of natural three or more body dynamics, thereby saving precious fuel and gaining flexibility in mission planning. This is the key for the development of some NASA mission trajectories, such as low energy libration point orbit missions (e.g., the sample return Genesis Discovery Mission), low energy lunar missions and low energy tours of outer planet moon systems, such as a mission to tour and explore in detail the icy moons of Jupiter. This book can serve as a valuable resource for graduate students and advanced undergraduates in applied mathematics and aerospace engineering, as well as a manual for practitioners who work on libration point and deep space missions in industry and at government laboratories. the authors include a wealth of background material, but also bring the reader up to a portion of the research frontier.
Teichmüller Theory and Applications to Geometry, Topology, and Dynamics
Author: John Hamal Hubbard
Publisher:
ISBN: 9781943863013
Category :
Languages : en
Pages : 576
Book Description
Publisher:
ISBN: 9781943863013
Category :
Languages : en
Pages : 576
Book Description
Foliations and the Geometry of 3-Manifolds
Author: Danny Calegari
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Publisher: Oxford University Press on Demand
ISBN: 0198570082
Category : Mathematics
Languages : en
Pages : 378
Book Description
This unique reference, aimed at research topologists, gives an exposition of the 'pseudo-Anosov' theory of foliations of 3-manifolds. This theory generalizes Thurston's theory of surface automorphisms and reveals an intimate connection between dynamics, geometry and topology in 3 dimensions. Significant themes returned to throughout the text include the importance of geometry, especially the hyperbolic geometry of surfaces, the importance of monotonicity, especially in1-dimensional and co-dimensional dynamics, and combinatorial approximation, using finite combinatorical objects such as train-tracks, branched surfaces and hierarchies to carry more complicated continuous objects.
Geometrical Dynamics of Complex Systems
Author: Vladimir G. Ivancevic
Publisher: Taylor & Francis
ISBN: 9781402045448
Category : Language Arts & Disciplines
Languages : en
Pages : 856
Book Description
Geometrical Dynamics of Complex Systems is a graduate-level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By'complexsystems', inthis book are meant high-dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds: engineering, physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi-input multi-output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular 'soft complexity philosophy', we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high-dimensional nonlinear systems and processes of 'real life' can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well-known that linear systems, which are completely predictable and controllable by de?nition - live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
Publisher: Taylor & Francis
ISBN: 9781402045448
Category : Language Arts & Disciplines
Languages : en
Pages : 856
Book Description
Geometrical Dynamics of Complex Systems is a graduate-level monographic textbook. Itrepresentsacomprehensiveintroductionintorigorousgeometrical dynamicsofcomplexsystemsofvariousnatures. By'complexsystems', inthis book are meant high-dimensional nonlinear systems, which can be (but not necessarily are) adaptive. This monograph proposes a uni?ed geometrical - proachtodynamicsofcomplexsystemsofvariouskinds: engineering, physical, biophysical, psychophysical, sociophysical, econophysical, etc. As their names suggest, all these multi-input multi-output (MIMO) systems have something in common: the underlying physics. However, instead of dealing with the pop- 1 ular 'soft complexity philosophy', we rather propose a rigorous geometrical and topological approach. We believe that our rigorous approach has much greater predictive power than the soft one. We argue that science and te- nology is all about prediction and control. Observation, understanding and explanation are important in education at undergraduate level, but after that it should be all prediction and control. The main objective of this book is to show that high-dimensional nonlinear systems and processes of 'real life' can be modelled and analyzed using rigorous mathematics, which enables their complete predictability and controllability, as if they were linear systems. It is well-known that linear systems, which are completely predictable and controllable by de?nition - live only in Euclidean spaces (of various - mensions). They are as simple as possible, mathematically elegant and fully elaborated from either scienti?c or engineering side. However, in nature, no- ing is linear. In reality, everything has a certain degree of nonlinearity, which means: unpredictability, with subsequent uncontrollability.
Differential Geometry Applied To Dynamical Systems (With Cd-rom)
Author: Jean-marc Ginoux
Publisher: World Scientific
ISBN: 9814467634
Category : Mathematics
Languages : en
Pages : 341
Book Description
This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory — or the flow — may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.
Publisher: World Scientific
ISBN: 9814467634
Category : Mathematics
Languages : en
Pages : 341
Book Description
This book aims to present a new approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory — or the flow — may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence identifying the main features of the system such as fixed points and their stability, local bifurcations of codimension one, center manifold equation, normal forms, linear invariant manifolds (straight lines, planes, hyperplanes).In the case of singularly perturbed systems or slow-fast dynamical systems, the flow curvature manifold directly provides the slow invariant manifold analytical equation associated with such systems. Also, starting from the flow curvature manifold, it will be demonstrated how to find again the corresponding dynamical system, thus solving the inverse problem.
Introduction to Topological Manifolds
Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 038722727X
Category : Mathematics
Languages : en
Pages : 395
Book Description
Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.
Publisher: Springer Science & Business Media
ISBN: 038722727X
Category : Mathematics
Languages : en
Pages : 395
Book Description
Manifolds play an important role in topology, geometry, complex analysis, algebra, and classical mechanics. Learning manifolds differs from most other introductory mathematics in that the subject matter is often completely unfamiliar. This introduction guides readers by explaining the roles manifolds play in diverse branches of mathematics and physics. The book begins with the basics of general topology and gently moves to manifolds, the fundamental group, and covering spaces.
Elements of Analytical Dynamics
Author: Rudolph Kurth
Publisher: Elsevier
ISBN: 1483151727
Category : Mathematics
Languages : en
Pages : 193
Book Description
Elements of Analytical Dynamics deals with dynamics, which studies the relationship between motion of material bodies and the forces acting on them. This book is a compilation of lectures given by the author at the Georgia and Institute of Technology and formed a part of a course in Topological Dynamics. The book begins by discussing the notions of space and time and their basic properties. It then discusses the Hamilton-Jacobi theory and Hamilton's principle and first integrals. The text concludes with a discussion on Jacobi's geometric interpretation of conservative systems. This book will be of direct use to graduate students of Mathematics with minimal background in Theoretical Mechanics.
Publisher: Elsevier
ISBN: 1483151727
Category : Mathematics
Languages : en
Pages : 193
Book Description
Elements of Analytical Dynamics deals with dynamics, which studies the relationship between motion of material bodies and the forces acting on them. This book is a compilation of lectures given by the author at the Georgia and Institute of Technology and formed a part of a course in Topological Dynamics. The book begins by discussing the notions of space and time and their basic properties. It then discusses the Hamilton-Jacobi theory and Hamilton's principle and first integrals. The text concludes with a discussion on Jacobi's geometric interpretation of conservative systems. This book will be of direct use to graduate students of Mathematics with minimal background in Theoretical Mechanics.
Ordinary Differential Equations with Applications
Author: Carmen Chicone
Publisher: Springer Science & Business Media
ISBN: 0387226230
Category : Mathematics
Languages : en
Pages : 569
Book Description
Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.
Publisher: Springer Science & Business Media
ISBN: 0387226230
Category : Mathematics
Languages : en
Pages : 569
Book Description
Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.