Two-point Boundary Value Problems: Shooting Methods

Two-point Boundary Value Problems: Shooting Methods PDF Author: Sanford M. Roberts
Publisher: Elsevier Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description

Two-point Boundary Value Problems: Shooting Methods

Two-point Boundary Value Problems: Shooting Methods PDF Author: Sanford M. Roberts
Publisher: Elsevier Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 300

Get Book Here

Book Description


Numerical Methods for Two-Point Boundary-Value Problems

Numerical Methods for Two-Point Boundary-Value Problems PDF Author: Herbert B. Keller
Publisher: Courier Dover Publications
ISBN: 0486828344
Category : Mathematics
Languages : en
Pages : 417

Get Book Here

Book Description
Elementary yet rigorous, this concise treatment is directed toward students with a knowledge of advanced calculus, basic numerical analysis, and some background in ordinary differential equations and linear algebra. 1968 edition.

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations PDF Author: Uri M. Ascher
Publisher: SIAM
ISBN: 9781611971231
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Applied Numerical Methods with MATLAB for Engineers and Scientists

Applied Numerical Methods with MATLAB for Engineers and Scientists PDF Author: Steven C. Chapra
Publisher: McGraw-Hill Science/Engineering/Math
ISBN:
Category : Computers
Languages : en
Pages : 618

Get Book Here

Book Description
Still brief - but with the chapters that you wanted - Steven Chapra’s new second edition is written for engineering and science students who need to learn numerical problem solving. This text focuses on problem-solving applications rather than theory, using MATLAB throughout. Theory is introduced to inform key concepts which are framed in applications and demonstrated using MATLAB. The new second edition feature new chapters on Numerical Differentiation, Optimization, and Boundary-Value Problems (ODEs).

Numerical Solution of Two Point Boundary Value Problems

Numerical Solution of Two Point Boundary Value Problems PDF Author: Herbert B. Keller
Publisher: SIAM
ISBN: 9781611970449
Category : Mathematics
Languages : en
Pages : 69

Get Book Here

Book Description
Lectures on a unified theory of and practical procedures for the numerical solution of very general classes of linear and nonlinear two point boundary-value problems.

Two-Point Boundary Value Problems: Lower and Upper Solutions

Two-Point Boundary Value Problems: Lower and Upper Solutions PDF Author: C. De Coster
Publisher: Elsevier
ISBN: 0080462472
Category : Mathematics
Languages : en
Pages : 502

Get Book Here

Book Description
This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes

Introduction to Numerical Analysis

Introduction to Numerical Analysis PDF Author: J. Stoer
Publisher: Springer Science & Business Media
ISBN: 1475722729
Category : Mathematics
Languages : en
Pages : 674

Get Book Here

Book Description
On the occasion of this new edition, the text was enlarged by several new sections. Two sections on B-splines and their computation were added to the chapter on spline functions: Due to their special properties, their flexibility, and the availability of well-tested programs for their computation, B-splines play an important role in many applications. Also, the authors followed suggestions by many readers to supplement the chapter on elimination methods with a section dealing with the solution of large sparse systems of linear equations. Even though such systems are usually solved by iterative methods, the realm of elimination methods has been widely extended due to powerful techniques for handling sparse matrices. We will explain some of these techniques in connection with the Cholesky algorithm for solving positive definite linear systems. The chapter on eigenvalue problems was enlarged by a section on the Lanczos algorithm; the sections on the LR and QR algorithm were rewritten and now contain a description of implicit shift techniques. In order to some extent take into account the progress in the area of ordinary differential equations, a new section on implicit differential equa tions and differential-algebraic systems was added, and the section on stiff differential equations was updated by describing further methods to solve such equations.

Python Programming and Numerical Methods

Python Programming and Numerical Methods PDF Author: Qingkai Kong
Publisher: Academic Press
ISBN: 0128195509
Category : Technology & Engineering
Languages : en
Pages : 482

Get Book Here

Book Description
Python Programming and Numerical Methods: A Guide for Engineers and Scientists introduces programming tools and numerical methods to engineering and science students, with the goal of helping the students to develop good computational problem-solving techniques through the use of numerical methods and the Python programming language. Part One introduces fundamental programming concepts, using simple examples to put new concepts quickly into practice. Part Two covers the fundamentals of algorithms and numerical analysis at a level that allows students to quickly apply results in practical settings. - Includes tips, warnings and "try this" features within each chapter to help the reader develop good programming practice - Summaries at the end of each chapter allow for quick access to important information - Includes code in Jupyter notebook format that can be directly run online

The Optimal Homotopy Asymptotic Method

The Optimal Homotopy Asymptotic Method PDF Author: Vasile Marinca
Publisher: Springer
ISBN: 3319153749
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.

Numerical Solution of Ordinary Differential Equations

Numerical Solution of Ordinary Differential Equations PDF Author: Kendall Atkinson
Publisher: John Wiley & Sons
ISBN: 1118164520
Category : Mathematics
Languages : en
Pages : 272

Get Book Here

Book Description
A concise introduction to numerical methodsand the mathematicalframework neededto understand their performance Numerical Solution of Ordinary Differential Equationspresents a complete and easy-to-follow introduction to classicaltopics in the numerical solution of ordinary differentialequations. The book's approach not only explains the presentedmathematics, but also helps readers understand how these numericalmethods are used to solve real-world problems. Unifying perspectives are provided throughout the text, bringingtogether and categorizing different types of problems in order tohelp readers comprehend the applications of ordinary differentialequations. In addition, the authors' collective academic experienceensures a coherent and accessible discussion of key topics,including: Euler's method Taylor and Runge-Kutta methods General error analysis for multi-step methods Stiff differential equations Differential algebraic equations Two-point boundary value problems Volterra integral equations Each chapter features problem sets that enable readers to testand build their knowledge of the presented methods, and a relatedWeb site features MATLAB® programs that facilitate theexploration of numerical methods in greater depth. Detailedreferences outline additional literature on both analytical andnumerical aspects of ordinary differential equations for furtherexploration of individual topics. Numerical Solution of Ordinary Differential Equations isan excellent textbook for courses on the numerical solution ofdifferential equations at the upper-undergraduate and beginninggraduate levels. It also serves as a valuable reference forresearchers in the fields of mathematics and engineering.