Author: Peter Linz
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240
Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Analytical and Numerical Methods for Volterra Equations
Author: Peter Linz
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240
Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Publisher: SIAM
ISBN: 9781611970852
Category : Mathematics
Languages : en
Pages : 240
Book Description
Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Simulating Electrochemical Reactions with Mathematica
Author: Michael J. Honeychurch
Publisher: Lulu.com
ISBN: 0975180401
Category : Science
Languages : en
Pages : 372
Book Description
Publisher: Lulu.com
ISBN: 0975180401
Category : Science
Languages : en
Pages : 372
Book Description
The Numerical Solution of Integral Equations of the Second Kind
Author: Kendall E. Atkinson
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Volterra Integral Equations
Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405
Book Description
See publisher description :
Publisher: Cambridge University Press
ISBN: 1107098726
Category : Mathematics
Languages : en
Pages : 405
Book Description
See publisher description :
The Numerical Solution of Volterra Equations
Author: Hermann Brunner
Publisher: North Holland
ISBN:
Category : Mathematics
Languages : en
Pages : 608
Book Description
This monograph presents the theory and modern numerical analysis of Volterra integral and integro-differential equations, including equations with weakly singular kernels. While the research worker will find an up-to-date account of recent developments of numerical methods for such equations, including an extensive bibliography, the authors have tried to make the book accessible to the non-specialist possessing only a limited knowledge of numerical analysis. After an introduction to the theory of Volterra equations and to numerical integration, the book covers linear methods and Runge-Kutta methods, collocation methods based on polynomial spline functions, stability of numerical methods, and it surveys computer programs for Volterra integral and integro-differential equations.
Publisher: North Holland
ISBN:
Category : Mathematics
Languages : en
Pages : 608
Book Description
This monograph presents the theory and modern numerical analysis of Volterra integral and integro-differential equations, including equations with weakly singular kernels. While the research worker will find an up-to-date account of recent developments of numerical methods for such equations, including an extensive bibliography, the authors have tried to make the book accessible to the non-specialist possessing only a limited knowledge of numerical analysis. After an introduction to the theory of Volterra equations and to numerical integration, the book covers linear methods and Runge-Kutta methods, collocation methods based on polynomial spline functions, stability of numerical methods, and it surveys computer programs for Volterra integral and integro-differential equations.
Integral Equations
Author: Wolfgang Hackbusch
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Computational Methods for Integral Equations
Author: L. M. Delves
Publisher: CUP Archive
ISBN: 9780521357968
Category : Mathematics
Languages : en
Pages : 392
Book Description
This textbook provides a readable account of techniques for numerical solutions.
Publisher: CUP Archive
ISBN: 9780521357968
Category : Mathematics
Languages : en
Pages : 392
Book Description
This textbook provides a readable account of techniques for numerical solutions.
Handbook of Integral Equations
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Publisher: CRC Press
ISBN: 0203881052
Category : Mathematics
Languages : en
Pages : 1143
Book Description
Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equa
Collocation Methods for Volterra Integral and Related Functional Differential Equations
Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620
Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Numerical Solution of Integral Equations
Author: Michael A. Golberg
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428
Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428
Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.