Some Applications of Gradient Methods

Some Applications of Gradient Methods PDF Author: Joseph W. Fischbach
Publisher:
ISBN:
Category : Conjugate gradient methods
Languages : en
Pages : 30

Get Book Here

Book Description

Some Applications of Gradient Methods

Some Applications of Gradient Methods PDF Author: Joseph W. Fischbach
Publisher:
ISBN:
Category : Conjugate gradient methods
Languages : en
Pages : 30

Get Book Here

Book Description


Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems

Refined Iterative Methods for Computation of the Solution and the Eigenvalues of Self-Adjoint Boundary Value Problems PDF Author: ENGELI
Publisher: Birkhäuser
ISBN: 3034872240
Category : Science
Languages : en
Pages : 107

Get Book Here

Book Description


Convex Optimization in Signal Processing and Communications

Convex Optimization in Signal Processing and Communications PDF Author: Daniel P. Palomar
Publisher: Cambridge University Press
ISBN: 0521762227
Category : Computers
Languages : en
Pages : 513

Get Book Here

Book Description
Leading experts provide the theoretical underpinnings of the subject plus tutorials on a wide range of applications, from automatic code generation to robust broadband beamforming. Emphasis on cutting-edge research and formulating problems in convex form make this an ideal textbook for advanced graduate courses and a useful self-study guide.

Machine Learning Refined

Machine Learning Refined PDF Author: Jeremy Watt
Publisher: Cambridge University Press
ISBN: 1108480721
Category : Computers
Languages : en
Pages : 597

Get Book Here

Book Description
An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Multiple Approaches to Intelligent Systems

Multiple Approaches to Intelligent Systems PDF Author: Ibrahim F. Imam
Publisher: Springer Science & Business Media
ISBN: 3540660763
Category : Computers
Languages : en
Pages : 918

Get Book Here

Book Description
This book constitutes the proceedings of the 12th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE'99, held in Cairo, Egypt, in May/June 1999. The 91 revised papers presented together with three invited contributions were carefully reviewed and selected from more than 140 submissions. The book offers sections on fuzzy systems, neural networks, genetic algorithms, searching, reasoning, expert systems, case-based reasoning, intelligent agents, distributed artificial intelligence, pattern recognition and vision, machine learning, temporal reasoning, knowledge representation, planning and scheduling, tutoring and manufacturing systems, and intelligent software engineering.

Neural Networks: Tricks of the Trade

Neural Networks: Tricks of the Trade PDF Author: Grégoire Montavon
Publisher: Springer
ISBN: 3642352898
Category : Computers
Languages : en
Pages : 753

Get Book Here

Book Description
The twenty last years have been marked by an increase in available data and computing power. In parallel to this trend, the focus of neural network research and the practice of training neural networks has undergone a number of important changes, for example, use of deep learning machines. The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.

Introduction to Statistical Machine Learning

Introduction to Statistical Machine Learning PDF Author: Masashi Sugiyama
Publisher: Morgan Kaufmann
ISBN: 0128023503
Category : Mathematics
Languages : en
Pages : 535

Get Book Here

Book Description
Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization

Nonlinear Conjugate Gradient Methods for Unconstrained Optimization PDF Author: Neculai Andrei
Publisher: Springer
ISBN: 9783030429492
Category : Mathematics
Languages : en
Pages : 486

Get Book Here

Book Description
Two approaches are known for solving large-scale unconstrained optimization problems—the limited-memory quasi-Newton method (truncated Newton method) and the conjugate gradient method. This is the first book to detail conjugate gradient methods, showing their properties and convergence characteristics as well as their performance in solving large-scale unconstrained optimization problems and applications. Comparisons to the limited-memory and truncated Newton methods are also discussed. Topics studied in detail include: linear conjugate gradient methods, standard conjugate gradient methods, acceleration of conjugate gradient methods, hybrid, modifications of the standard scheme, memoryless BFGS preconditioned, and three-term. Other conjugate gradient methods with clustering the eigenvalues or with the minimization of the condition number of the iteration matrix, are also treated. For each method, the convergence analysis, the computational performances and the comparisons versus other conjugate gradient methods are given. The theory behind the conjugate gradient algorithms presented as a methodology is developed with a clear, rigorous, and friendly exposition; the reader will gain an understanding of their properties and their convergence and will learn to develop and prove the convergence of his/her own methods. Numerous numerical studies are supplied with comparisons and comments on the behavior of conjugate gradient algorithms for solving a collection of 800 unconstrained optimization problems of different structures and complexities with the number of variables in the range [1000,10000]. The book is addressed to all those interested in developing and using new advanced techniques for solving unconstrained optimization complex problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master students in mathematical programming, will find plenty of information and practical applications for solving large-scale unconstrained optimization problems and applications by conjugate gradient methods.

Proximal Algorithms

Proximal Algorithms PDF Author: Neal Parikh
Publisher: Now Pub
ISBN: 9781601987167
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
Proximal Algorithms discusses proximal operators and proximal algorithms, and illustrates their applicability to standard and distributed convex optimization in general and many applications of recent interest in particular. Much like Newton's method is a standard tool for solving unconstrained smooth optimization problems of modest size, proximal algorithms can be viewed as an analogous tool for nonsmooth, constrained, large-scale, or distributed versions of these problems. They are very generally applicable, but are especially well-suited to problems of substantial recent interest involving large or high-dimensional datasets. Proximal methods sit at a higher level of abstraction than classical algorithms like Newton's method: the base operation is evaluating the proximal operator of a function, which itself involves solving a small convex optimization problem. These subproblems, which generalize the problem of projecting a point onto a convex set, often admit closed-form solutions or can be solved very quickly with standard or simple specialized methods. Proximal Algorithms discusses different interpretations of proximal operators and algorithms, looks at their connections to many other topics in optimization and applied mathematics, surveys some popular algorithms, and provides a large number of examples of proximal operators that commonly arise in practice.

Encyclopedia of Optimization

Encyclopedia of Optimization PDF Author: Christodoulos A. Floudas
Publisher: Springer Science & Business Media
ISBN: 0387747583
Category : Mathematics
Languages : en
Pages : 4646

Get Book Here

Book Description
The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".