Solving Polynomial Equation Systems III: Volume 3, Algebraic Solving

Solving Polynomial Equation Systems III: Volume 3, Algebraic Solving PDF Author: Teo Mora
Publisher: Cambridge University Press
ISBN: 1316297969
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
This third volume of four finishes the program begun in Volume 1 by describing all the most important techniques, mainly based on Gröbner bases, which allow one to manipulate the roots of the equation rather than just compute them. The book begins with the 'standard' solutions (Gianni–Kalkbrener Theorem, Stetter Algorithm, Cardinal–Mourrain result) and then moves on to more innovative methods (Lazard triangular sets, Rouillier's Rational Univariate Representation, the TERA Kronecker package). The author also looks at classical results, such as Macaulay's Matrix, and provides a historical survey of elimination, from Bézout to Cayley. This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.

Solving Polynomial Equation Systems III: Volume 3, Algebraic Solving

Solving Polynomial Equation Systems III: Volume 3, Algebraic Solving PDF Author: Teo Mora
Publisher: Cambridge University Press
ISBN: 1316297969
Category : Mathematics
Languages : en
Pages : 332

Get Book Here

Book Description
This third volume of four finishes the program begun in Volume 1 by describing all the most important techniques, mainly based on Gröbner bases, which allow one to manipulate the roots of the equation rather than just compute them. The book begins with the 'standard' solutions (Gianni–Kalkbrener Theorem, Stetter Algorithm, Cardinal–Mourrain result) and then moves on to more innovative methods (Lazard triangular sets, Rouillier's Rational Univariate Representation, the TERA Kronecker package). The author also looks at classical results, such as Macaulay's Matrix, and provides a historical survey of elimination, from Bézout to Cayley. This comprehensive treatment in four volumes is a significant contribution to algorithmic commutative algebra that will be essential reading for algebraists and algebraic geometers.

Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations PDF Author: Bernd Sturmfels
Publisher: American Mathematical Soc.
ISBN: 0821832514
Category : Mathematics
Languages : en
Pages : 162

Get Book Here

Book Description
Bridging a number of mathematical disciplines, and exposing many facets of systems of polynomial equations, Bernd Sturmfels's study covers a wide spectrum of mathematical techniques and algorithms, both symbolic and numerical.

Equivalents of the Riemann Hypothesis: Volume 3, Further Steps towards Resolving the Riemann Hypothesis

Equivalents of the Riemann Hypothesis: Volume 3, Further Steps towards Resolving the Riemann Hypothesis PDF Author: Kevin Broughan
Publisher: Cambridge University Press
ISBN: 1009384775
Category : Mathematics
Languages : en
Pages : 706

Get Book Here

Book Description
This three-volume work presents the main known equivalents to the Riemann hypothesis, perhaps the most important problem in mathematics. Volume 3 covers new arithmetic and analytic equivalences from numerous studies in the field, such as Rogers and Tao, and presents derivations which show whether the Riemann hypothesis is decidable.

Solving Polynomial Equations

Solving Polynomial Equations PDF Author: Alicia Dickenstein
Publisher: Springer Science & Business Media
ISBN: 3540243267
Category : Computers
Languages : en
Pages : 433

Get Book Here

Book Description
This book provides a general introduction to modern mathematical aspects in computing with multivariate polynomials and in solving algebraic systems. It presents the state of the art in several symbolic, numeric, and symbolic-numeric techniques, including effective and algorithmic methods in algebraic geometry and computational algebra, complexity issues, and applications ranging from statistics and geometric modelling to robotics and vision. Graduate students, as well as researchers in related areas, will find an excellent introduction to currently interesting topics. These cover Groebner and border bases, multivariate resultants, residues, primary decomposition, multivariate polynomial factorization, homotopy continuation, complexity issues, and their applications.

An Invitation to Analytic Combinatorics

An Invitation to Analytic Combinatorics PDF Author: Stephen Melczer
Publisher: Springer Nature
ISBN: 3030670805
Category : Mathematics
Languages : en
Pages : 418

Get Book Here

Book Description
This book uses new mathematical tools to examine broad computability and complexity questions in enumerative combinatorics, with applications to other areas of mathematics, theoretical computer science, and physics. A focus on effective algorithms leads to the development of computer algebra software of use to researchers in these domains. After a survey of current results and open problems on decidability in enumerative combinatorics, the text shows how the cutting edge of this research is the new domain of Analytic Combinatorics in Several Variables (ACSV). The remaining chapters of the text alternate between a pedagogical development of the theory, applications (including the resolution by this author of conjectures in lattice path enumeration which resisted several other approaches), and the development of algorithms. The final chapters in the text show, through examples and general theory, how results from stratified Morse theory can help refine some of these computability questions. Complementing the written presentation are over 50 worksheets for the SageMath and Maple computer algebra systems working through examples in the text.

Randomization, Relaxation, and Complexity in Polynomial Equation Solving

Randomization, Relaxation, and Complexity in Polynomial Equation Solving PDF Author: Leonid Gurvits
Publisher: American Mathematical Soc.
ISBN: 0821852280
Category : Mathematics
Languages : en
Pages : 230

Get Book Here

Book Description
This volume corresponds to the Banff International Research Station Workshop on Randomization, Relaxation, and Complexity, held from February 28-March 5, 2010. It contains a sample of advanced algorithmic techniques underpinning the solution of systems of polynomial equations. The papers are written by leading experts in algorithmic algebraic geometry and examine core topics.

Intermediate Algebra 2e

Intermediate Algebra 2e PDF Author: Lynn Marecek
Publisher:
ISBN: 9781951693848
Category :
Languages : en
Pages :

Get Book Here

Book Description


Solving Polynomial Equation Systems

Solving Polynomial Equation Systems PDF Author:
Publisher: Cambridge University Press
ISBN: 0521811554
Category :
Languages : en
Pages : 295

Get Book Here

Book Description


Handbook on Semidefinite, Conic and Polynomial Optimization

Handbook on Semidefinite, Conic and Polynomial Optimization PDF Author: Miguel F. Anjos
Publisher: Springer Science & Business Media
ISBN: 1461407699
Category : Business & Economics
Languages : en
Pages : 955

Get Book Here

Book Description
Semidefinite and conic optimization is a major and thriving research area within the optimization community. Although semidefinite optimization has been studied (under different names) since at least the 1940s, its importance grew immensely during the 1990s after polynomial-time interior-point methods for linear optimization were extended to solve semidefinite optimization problems. Since the beginning of the 21st century, not only has research into semidefinite and conic optimization continued unabated, but also a fruitful interaction has developed with algebraic geometry through the close connections between semidefinite matrices and polynomial optimization. This has brought about important new results and led to an even higher level of research activity. This Handbook on Semidefinite, Conic and Polynomial Optimization provides the reader with a snapshot of the state-of-the-art in the growing and mutually enriching areas of semidefinite optimization, conic optimization, and polynomial optimization. It contains a compendium of the recent research activity that has taken place in these thrilling areas, and will appeal to doctoral students, young graduates, and experienced researchers alike. The Handbook’s thirty-one chapters are organized into four parts: Theory, covering significant theoretical developments as well as the interactions between conic optimization and polynomial optimization; Algorithms, documenting the directions of current algorithmic development; Software, providing an overview of the state-of-the-art; Applications, dealing with the application areas where semidefinite and conic optimization has made a significant impact in recent years.

Solving Polynomial Equation Systems I

Solving Polynomial Equation Systems I PDF Author: Teo Mora
Publisher: Cambridge University Press
ISBN: 9780521811545
Category : Mathematics
Languages : en
Pages : 452

Get Book Here

Book Description
Computational algebra; computational number theory; commutative algebra; handbook; reference; algorithmic; modern.