Author: David Barrow
Publisher: Brooks Cole
ISBN:
Category : Computers
Languages : en
Pages : 166
Book Description
This resource manual/laboratory book shows students how to use the Maple computer algebra system to solve problems in ordinary differential equations. Projects, exercises, and explanations show readers how to get the most out of the Maple computer algebra
Solving ODEs with Maple V
Author: David Barrow
Publisher: Brooks Cole
ISBN:
Category : Computers
Languages : en
Pages : 166
Book Description
This resource manual/laboratory book shows students how to use the Maple computer algebra system to solve problems in ordinary differential equations. Projects, exercises, and explanations show readers how to get the most out of the Maple computer algebra
Publisher: Brooks Cole
ISBN:
Category : Computers
Languages : en
Pages : 166
Book Description
This resource manual/laboratory book shows students how to use the Maple computer algebra system to solve problems in ordinary differential equations. Projects, exercises, and explanations show readers how to get the most out of the Maple computer algebra
Maple V: Mathematics and its Applications
Author: Robert J. Lopez
Publisher: Springer Science & Business Media
ISBN: 1461202639
Category : Mathematics
Languages : en
Pages : 238
Book Description
The Maple Summer Workshop and Symposium, MSWS '94, reflects the growing commu nity of Maple users around the world. This volume contains the contributed papers. A careful inspection of author affiliations will reveal that they come from North America, Europe, and Australia. In fact, fifteen come from the United States, two from Canada, one from Australia, and nine come from Europe. Of European papers, two are from Ger many, two are from the Netherlands, two are from Spain, and one each is from Switzerland, Denmark, and the United Kingdom. More important than the geographical diversity is the intellectual range of the contributions. We begin to see in this collection of works papers in which Maple is used in an increasingly flexible way. For example, there is an application in computer science that uses Maple as a tool to create a new utility. There is an application in abstract algebra where Maple has been used to create new functionalities for computing in a rational function field. There are applications to geometrical optics, digital signal processing, and experimental design.
Publisher: Springer Science & Business Media
ISBN: 1461202639
Category : Mathematics
Languages : en
Pages : 238
Book Description
The Maple Summer Workshop and Symposium, MSWS '94, reflects the growing commu nity of Maple users around the world. This volume contains the contributed papers. A careful inspection of author affiliations will reveal that they come from North America, Europe, and Australia. In fact, fifteen come from the United States, two from Canada, one from Australia, and nine come from Europe. Of European papers, two are from Ger many, two are from the Netherlands, two are from Spain, and one each is from Switzerland, Denmark, and the United Kingdom. More important than the geographical diversity is the intellectual range of the contributions. We begin to see in this collection of works papers in which Maple is used in an increasingly flexible way. For example, there is an application in computer science that uses Maple as a tool to create a new utility. There is an application in abstract algebra where Maple has been used to create new functionalities for computing in a rational function field. There are applications to geometrical optics, digital signal processing, and experimental design.
Solving ODEs with MATLAB
Author: Lawrence F. Shampine
Publisher: Cambridge University Press
ISBN: 9780521530941
Category : Computers
Languages : en
Pages : 276
Book Description
This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
Publisher: Cambridge University Press
ISBN: 9780521530941
Category : Computers
Languages : en
Pages : 276
Book Description
This concise text, first published in 2003, is for a one-semester course for upper-level undergraduates and beginning graduate students in engineering, science, and mathematics, and can also serve as a quick reference for professionals. The major topics in ordinary differential equations, initial value problems, boundary value problems, and delay differential equations, are usually taught in three separate semester-long courses. This single book provides a sound treatment of all three in fewer than 300 pages. Each chapter begins with a discussion of the 'facts of life' for the problem, mainly by means of examples. Numerical methods for the problem are then developed, but only those methods most widely used. The treatment of each method is brief and technical issues are minimized, but all the issues important in practice and for understanding the codes are discussed. The last part of each chapter is a tutorial that shows how to solve problems by means of small, but realistic, examples.
Differential Equations with Maple V
Author: Martha L. Abell
Publisher: Academic Press
ISBN: 9780120415601
Category : Computers
Languages : en
Pages : 740
Book Description
Through the use of numerous examples that illustrate how to solve important applications using Maple V, Release 2, this book provides readers with a solid, hands-on introduction to ordinary and partial differental equations. Includes complete coverage of constructing and numerically computing and approximating solutions to ordinary and partial equations.
Publisher: Academic Press
ISBN: 9780120415601
Category : Computers
Languages : en
Pages : 740
Book Description
Through the use of numerous examples that illustrate how to solve important applications using Maple V, Release 2, this book provides readers with a solid, hands-on introduction to ordinary and partial differental equations. Includes complete coverage of constructing and numerically computing and approximating solutions to ordinary and partial equations.
Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Author: George A. Articolo
Publisher: Academic Press
ISBN: 012381412X
Category : Computers
Languages : en
Pages : 733
Book Description
Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Publisher: Academic Press
ISBN: 012381412X
Category : Computers
Languages : en
Pages : 733
Book Description
Student Solutions Manual, Partial Differential Equations & Boundary Value Problems with Maple
Ordinary Differential Equations and Integral Equations
Author: C.T.H. Baker
Publisher: Elsevier
ISBN: 0080929559
Category : Mathematics
Languages : en
Pages : 559
Book Description
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of
Publisher: Elsevier
ISBN: 0080929559
Category : Mathematics
Languages : en
Pages : 559
Book Description
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods).John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?"Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices.The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour.Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems.Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions.Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions.Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods.Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory.Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages.Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields.Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems.Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems.Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems.Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions.The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect.Many phenomena incorporate noise, and the numerical solution of
Solving Differential Equations with Maple V, Release 4
Author: David Barrow
Publisher: Brooks Cole
ISBN:
Category : Computers
Languages : en
Pages : 276
Book Description
This comprehensive book helps students tap into the power of Maple®, thereby simplifying the computations and graphics that are often required in the practical use of mathematics. Numerous examples and exercises provide a thorough introduction to the basic Maple® commands that are needed to solve differential equations. Topics include: numerical algorithms, first order linear systems, homogeneous and nonhomogeneous equations, beats and resonance, Laplace Transforms, qualitative theory, nonlinear systems, and much more.
Publisher: Brooks Cole
ISBN:
Category : Computers
Languages : en
Pages : 276
Book Description
This comprehensive book helps students tap into the power of Maple®, thereby simplifying the computations and graphics that are often required in the practical use of mathematics. Numerous examples and exercises provide a thorough introduction to the basic Maple® commands that are needed to solve differential equations. Topics include: numerical algorithms, first order linear systems, homogeneous and nonhomogeneous equations, beats and resonance, Laplace Transforms, qualitative theory, nonlinear systems, and much more.
Traveling Wave Analysis of Partial Differential Equations
Author: Graham Griffiths
Publisher: Academic Press
ISBN: 0123846536
Category : Mathematics
Languages : en
Pages : 463
Book Description
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
Publisher: Academic Press
ISBN: 0123846536
Category : Mathematics
Languages : en
Pages : 463
Book Description
Although the Partial Differential Equations (PDE) models that are now studied are usually beyond traditional mathematical analysis, the numerical methods that are being developed and used require testing and validation. This is often done with PDEs that have known, exact, analytical solutions. The development of analytical solutions is also an active area of research, with many advances being reported recently, particularly traveling wave solutions for nonlinear evolutionary PDEs. Thus, the current development of analytical solutions directly supports the development of numerical methods by providing a spectrum of test problems that can be used to evaluate numerical methods. This book surveys some of these new developments in analytical and numerical methods, and relates the two through a series of PDE examples. The PDEs that have been selected are largely "named'' since they carry the names of their original contributors. These names usually signify that the PDEs are widely recognized and used in many application areas. The authors' intention is to provide a set of numerical and analytical methods based on the concept of a traveling wave, with a central feature of conversion of the PDEs to ODEs. The Matlab and Maple software will be available for download from this website shortly. www.pdecomp.net - Includes a spectrum of applications in science, engineering, applied mathematics - Presents a combination of numerical and analytical methods - Provides transportable computer codes in Matlab and Maple
Advanced Problem Solving with Maple
Author: William P. Fox
Publisher: CRC Press
ISBN: 0429891350
Category : Mathematics
Languages : en
Pages : 347
Book Description
Problem Solving is essential to solve real-world problems. Advanced Problem Solving with Maple: A First Course applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. It is intended for a course introducing students to mathematical topics they will revisit within their further studies. The authors present mathematical modeling and problem-solving topics using Maple as the computer algebra system for mathematical explorations, as well as obtaining plots that help readers perform analyses. The book presents cogent applications that demonstrate an effective use of Maple, provide discussions of the results obtained using Maple, and stimulate thought and analysis of additional applications. Highlights: The book’s real-world case studies prepare the student for modeling applications Bridges the study of topics and applications to various fields of mathematics, science, and engineering Features a flexible format and tiered approach offers courses for students at various levels The book can be used for students with only algebra or calculus behind them About the authors: Dr. William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his Ph.D. at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP’s Math Contest in Modeling (MCM). *Please note that the Maple package, "PSM", is now on the public area of the Maple Cloud. To access it: • From the web: 1. Go to the website https://maple.cloud 2. Click on "packages" in the left navigation pane 3. Click on "PSM" in the list of packages. 4. Click the "Download" button to capture the package. • From Maple: 1. Click on the Maple Cloud icon (far right in the Maple window toolbar). Or click on the Maple Cloud button on Maple's Start page to go to the website. 2. Click on the "packages" in the navigation pane 3. Click on "PSM" in the list of packages. The package then downloads into Maple directly.
Publisher: CRC Press
ISBN: 0429891350
Category : Mathematics
Languages : en
Pages : 347
Book Description
Problem Solving is essential to solve real-world problems. Advanced Problem Solving with Maple: A First Course applies the mathematical modeling process by formulating, building, solving, analyzing, and criticizing mathematical models. It is intended for a course introducing students to mathematical topics they will revisit within their further studies. The authors present mathematical modeling and problem-solving topics using Maple as the computer algebra system for mathematical explorations, as well as obtaining plots that help readers perform analyses. The book presents cogent applications that demonstrate an effective use of Maple, provide discussions of the results obtained using Maple, and stimulate thought and analysis of additional applications. Highlights: The book’s real-world case studies prepare the student for modeling applications Bridges the study of topics and applications to various fields of mathematics, science, and engineering Features a flexible format and tiered approach offers courses for students at various levels The book can be used for students with only algebra or calculus behind them About the authors: Dr. William P. Fox is an emeritus professor in the Department of Defense Analysis at the Naval Postgraduate School. Currently, he is an adjunct professor, Department of Mathematics, the College of William and Mary. He received his Ph.D. at Clemson University and has many publications and scholarly activities including twenty books and over one hundred and fifty journal articles. William C. Bauldry, Prof. Emeritus and Adjunct Research Prof. of Mathematics at Appalachian State University, received his PhD in Approximation Theory from Ohio State. He has published many papers on pedagogy and technology, often using Maple, and has been the PI of several NSF-funded projects incorporating technology and modeling into math courses. He currently serves as Associate Director of COMAP’s Math Contest in Modeling (MCM). *Please note that the Maple package, "PSM", is now on the public area of the Maple Cloud. To access it: • From the web: 1. Go to the website https://maple.cloud 2. Click on "packages" in the left navigation pane 3. Click on "PSM" in the list of packages. 4. Click the "Download" button to capture the package. • From Maple: 1. Click on the Maple Cloud icon (far right in the Maple window toolbar). Or click on the Maple Cloud button on Maple's Start page to go to the website. 2. Click on the "packages" in the navigation pane 3. Click on "PSM" in the list of packages. The package then downloads into Maple directly.
Dynamical Systems with Applications using MapleTM
Author: Stephen Lynch
Publisher: Springer Science & Business Media
ISBN: 0817646051
Category : Mathematics
Languages : en
Pages : 512
Book Description
Excellent reviews of the first edition (Mathematical Reviews, SIAM, Reviews, UK Nonlinear News, The Maple Reporter) New edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions Two new chapters on neural networks and simulation have also been added Wide variety of topics covered with applications to many fields, including mechanical systems, chemical kinetics, economics, population dynamics, nonlinear optics, and materials science Accessible to a broad, interdisciplinary audience of readers with a general mathematical background, including senior undergraduates, graduate students, and working scientists in various branches of applied mathematics, the natural sciences, and engineering A hands-on approach is used with Maple as a pedagogical tool throughout; Maple worksheet files are listed at the end of each chapter, and along with commands, programs, and output may be viewed in color at the author’s website with additional applications and further links of interest at Maplesoft’s Application Center
Publisher: Springer Science & Business Media
ISBN: 0817646051
Category : Mathematics
Languages : en
Pages : 512
Book Description
Excellent reviews of the first edition (Mathematical Reviews, SIAM, Reviews, UK Nonlinear News, The Maple Reporter) New edition has been thoroughly updated and expanded to include more applications, examples, and exercises, all with solutions Two new chapters on neural networks and simulation have also been added Wide variety of topics covered with applications to many fields, including mechanical systems, chemical kinetics, economics, population dynamics, nonlinear optics, and materials science Accessible to a broad, interdisciplinary audience of readers with a general mathematical background, including senior undergraduates, graduate students, and working scientists in various branches of applied mathematics, the natural sciences, and engineering A hands-on approach is used with Maple as a pedagogical tool throughout; Maple worksheet files are listed at the end of each chapter, and along with commands, programs, and output may be viewed in color at the author’s website with additional applications and further links of interest at Maplesoft’s Application Center