Author: W. Keith Nicholson
Publisher: John Wiley & Sons
ISBN: 1118347897
Category : Mathematics
Languages : en
Pages : 6
Book Description
An indispensable companion to the book hailed an "expository masterpiece of the highest didactic value" by Zentralblatt MATH This solutions manual helps readers test and reinforce the understanding of the principles and real-world applications of abstract algebra gained from their reading of the critically acclaimed Introduction to Abstract Algebra. Ideal for students, as well as engineers, computer scientists, and applied mathematicians interested in the subject, it provides a wealth of concrete examples of induction, number theory, integers modulo n, and permutations. Worked examples and real-world problems help ensure a complete understanding of the subject, regardless of a reader's background in mathematics.
Solutions Manual to accompany Introduction to Abstract Algebra, 4e, Solutions Manual
Author: W. Keith Nicholson
Publisher: John Wiley & Sons
ISBN: 1118347897
Category : Mathematics
Languages : en
Pages : 6
Book Description
An indispensable companion to the book hailed an "expository masterpiece of the highest didactic value" by Zentralblatt MATH This solutions manual helps readers test and reinforce the understanding of the principles and real-world applications of abstract algebra gained from their reading of the critically acclaimed Introduction to Abstract Algebra. Ideal for students, as well as engineers, computer scientists, and applied mathematicians interested in the subject, it provides a wealth of concrete examples of induction, number theory, integers modulo n, and permutations. Worked examples and real-world problems help ensure a complete understanding of the subject, regardless of a reader's background in mathematics.
Publisher: John Wiley & Sons
ISBN: 1118347897
Category : Mathematics
Languages : en
Pages : 6
Book Description
An indispensable companion to the book hailed an "expository masterpiece of the highest didactic value" by Zentralblatt MATH This solutions manual helps readers test and reinforce the understanding of the principles and real-world applications of abstract algebra gained from their reading of the critically acclaimed Introduction to Abstract Algebra. Ideal for students, as well as engineers, computer scientists, and applied mathematicians interested in the subject, it provides a wealth of concrete examples of induction, number theory, integers modulo n, and permutations. Worked examples and real-world problems help ensure a complete understanding of the subject, regardless of a reader's background in mathematics.
Introduction to Abstract Algebra
Author: W. Keith Nicholson
Publisher: John Wiley & Sons
ISBN: 1118135350
Category : Mathematics
Languages : en
Pages : 560
Book Description
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. The Fourth Edition features important concepts as well as specialized topics, including: The treatment of nilpotent groups, including the Frattini and Fitting subgroups Symmetric polynomials The proof of the fundamental theorem of algebra using symmetric polynomials The proof of Wedderburn's theorem on finite division rings The proof of the Wedderburn-Artin theorem Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises. Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.
Publisher: John Wiley & Sons
ISBN: 1118135350
Category : Mathematics
Languages : en
Pages : 560
Book Description
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. The Fourth Edition features important concepts as well as specialized topics, including: The treatment of nilpotent groups, including the Frattini and Fitting subgroups Symmetric polynomials The proof of the fundamental theorem of algebra using symmetric polynomials The proof of Wedderburn's theorem on finite division rings The proof of the Wedderburn-Artin theorem Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises. Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.
Principles of Mathematical Analysis
Author: Walter Rudin
Publisher: McGraw-Hill Publishing Company
ISBN: 9780070856134
Category : Mathematics
Languages : en
Pages : 342
Book Description
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Publisher: McGraw-Hill Publishing Company
ISBN: 9780070856134
Category : Mathematics
Languages : en
Pages : 342
Book Description
The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
Algebra and Number Theory
Author: Martyn R. Dixon
Publisher: John Wiley & Sons
ISBN: 9780470640531
Category : Mathematics
Languages : en
Pages : 544
Book Description
Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.
Publisher: John Wiley & Sons
ISBN: 9780470640531
Category : Mathematics
Languages : en
Pages : 544
Book Description
Explore the main algebraic structures and number systems that play a central role across the field of mathematics Algebra and number theory are two powerful branches of modern mathematics at the forefront of current mathematical research, and each plays an increasingly significant role in different branches of mathematics, from geometry and topology to computing and communications. Based on the authors' extensive experience within the field, Algebra and Number Theory has an innovative approach that integrates three disciplines—linear algebra, abstract algebra, and number theory—into one comprehensive and fluid presentation, facilitating a deeper understanding of the topic and improving readers' retention of the main concepts. The book begins with an introduction to the elements of set theory. Next, the authors discuss matrices, determinants, and elements of field theory, including preliminary information related to integers and complex numbers. Subsequent chapters explore key ideas relating to linear algebra such as vector spaces, linear mapping, and bilinear forms. The book explores the development of the main ideas of algebraic structures and concludes with applications of algebraic ideas to number theory. Interesting applications are provided throughout to demonstrate the relevance of the discussed concepts. In addition, chapter exercises allow readers to test their comprehension of the presented material. Algebra and Number Theory is an excellent book for courses on linear algebra, abstract algebra, and number theory at the upper-undergraduate level. It is also a valuable reference for researchers working in different fields of mathematics, computer science, and engineering as well as for individuals preparing for a career in mathematics education.
Student Solutions Manual to Accompany Advanced Engineering Mathematics
Author: Dennis G. Zill
Publisher: Jones & Bartlett Publishers
ISBN: 9781284206265
Category : Mathematics
Languages : en
Pages : 432
Book Description
The Student Solutions Manual to Accompany Advanced Engineering Mathematics, Seventh Edition is designed to help you get the most out of your course Engineering Mathematics course. It provides the answers to selected exercises from each chapter in your textbook. This enables you to assess your progress and understanding while encouraging you to find solutions on your own. Students, use this tool to: Check answers to selected exercises Confirm that you understand ideas and concepts Review past material Prepare for future material Get the most out of your Advanced Engineering Mathematics course and improve your grades with your Student Solutions Manual!
Publisher: Jones & Bartlett Publishers
ISBN: 9781284206265
Category : Mathematics
Languages : en
Pages : 432
Book Description
The Student Solutions Manual to Accompany Advanced Engineering Mathematics, Seventh Edition is designed to help you get the most out of your course Engineering Mathematics course. It provides the answers to selected exercises from each chapter in your textbook. This enables you to assess your progress and understanding while encouraging you to find solutions on your own. Students, use this tool to: Check answers to selected exercises Confirm that you understand ideas and concepts Review past material Prepare for future material Get the most out of your Advanced Engineering Mathematics course and improve your grades with your Student Solutions Manual!
Solutions Manual to accompany Introduction to Linear Regression Analysis
Author: Douglas C. Montgomery
Publisher: John Wiley & Sons
ISBN: 1118548507
Category : Mathematics
Languages : en
Pages : 112
Book Description
As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.
Publisher: John Wiley & Sons
ISBN: 1118548507
Category : Mathematics
Languages : en
Pages : 112
Book Description
As the Solutions Manual, this book is meant to accompany the main title, Introduction to Linear Regression Analysis, Fifth Edition. Clearly balancing theory with applications, this book describes both the conventional and less common uses of linear regression in the practical context of today's mathematical and scientific research. Beginning with a general introduction to regression modeling, including typical applications, the book then outlines a host of technical tools that form the linear regression analytical arsenal, including: basic inference procedures and introductory aspects of model adequacy checking; how transformations and weighted least squares can be used to resolve problems of model inadequacy; how to deal with influential observations; and polynomial regression models and their variations. The book also includes material on regression models with autocorrelated errors, bootstrapping regression estimates, classification and regression trees, and regression model validation.
Ranks of Groups
Author: Martyn R. Dixon
Publisher: John Wiley & Sons
ISBN: 1119080274
Category : Mathematics
Languages : en
Pages : 322
Book Description
A comprehensive guide to ranks and group theory Ranks of Groups features a logical, straightforward presentation, beginning with a succinct discussion of the standard ranks before moving on to specific aspects of ranks of groups. Topics covered include section ranks, groups of finite 0-rank, minimax rank, special rank, groups of finite section p-rank, groups having finite section p-rank for all primes p, groups of finite bounded section rank, groups whose abelian subgroups have finite rank, groups whose abelian subgroups have bounded finite rank, finitely generated groups having finite rank, residual properties of groups of finite rank, groups covered by normal subgroups of bounded finite rank, and theorems of Schur and Baer. This book presents fundamental concepts and notions related to the area of ranks in groups. Class-tested worldwide by highly qualified authors in the fields of abstract algebra and group theory, this book focuses on critical concepts with the most interesting, striking, and central results. In order to provide readers with the most useful techniques related to the various different ranks in a group, the authors have carefully examined hundreds of current research articles on group theory authored by researchers around the world, providing an up-to-date, comprehensive treatment of the subject. • All material has been thoroughly vetted and class-tested by well-known researchers who have worked in the area of rank conditions in groups • Topical coverage reflects the most modern, up-to-date research on ranks of groups • Features a unified point-of-view on the most important results in ranks obtained using various methods so as to illustrate the role those ranks play within group theory • Focuses on the tools and methods concerning ranks necessary to achieve significant progress in the study and clarification of the structure of groups Ranks of Groups: The Tools, Characteristics, and Restrictions is an excellent textbook for graduate courses in mathematics, featuring numerous exercises, whose solutions are provided. This book will be an indispensable resource for mathematicians and researchers specializing in group theory and abstract algebra. MARTYN R. DIXON, PhD, is Professor in the Department of Mathematics at the University of Alabama. LEONID A. KURDACHENKO, PhD, DrS, is Distinguished Professor and Chair of the Department of Algebra at the University of Dnepropetrovsk, Ukraine. IGOR YA SUBBOTIN, PhD, is Professor in the Department of Mathematics and Natural Sciences at National University in Los Angeles, California.
Publisher: John Wiley & Sons
ISBN: 1119080274
Category : Mathematics
Languages : en
Pages : 322
Book Description
A comprehensive guide to ranks and group theory Ranks of Groups features a logical, straightforward presentation, beginning with a succinct discussion of the standard ranks before moving on to specific aspects of ranks of groups. Topics covered include section ranks, groups of finite 0-rank, minimax rank, special rank, groups of finite section p-rank, groups having finite section p-rank for all primes p, groups of finite bounded section rank, groups whose abelian subgroups have finite rank, groups whose abelian subgroups have bounded finite rank, finitely generated groups having finite rank, residual properties of groups of finite rank, groups covered by normal subgroups of bounded finite rank, and theorems of Schur and Baer. This book presents fundamental concepts and notions related to the area of ranks in groups. Class-tested worldwide by highly qualified authors in the fields of abstract algebra and group theory, this book focuses on critical concepts with the most interesting, striking, and central results. In order to provide readers with the most useful techniques related to the various different ranks in a group, the authors have carefully examined hundreds of current research articles on group theory authored by researchers around the world, providing an up-to-date, comprehensive treatment of the subject. • All material has been thoroughly vetted and class-tested by well-known researchers who have worked in the area of rank conditions in groups • Topical coverage reflects the most modern, up-to-date research on ranks of groups • Features a unified point-of-view on the most important results in ranks obtained using various methods so as to illustrate the role those ranks play within group theory • Focuses on the tools and methods concerning ranks necessary to achieve significant progress in the study and clarification of the structure of groups Ranks of Groups: The Tools, Characteristics, and Restrictions is an excellent textbook for graduate courses in mathematics, featuring numerous exercises, whose solutions are provided. This book will be an indispensable resource for mathematicians and researchers specializing in group theory and abstract algebra. MARTYN R. DIXON, PhD, is Professor in the Department of Mathematics at the University of Alabama. LEONID A. KURDACHENKO, PhD, DrS, is Distinguished Professor and Chair of the Department of Algebra at the University of Dnepropetrovsk, Ukraine. IGOR YA SUBBOTIN, PhD, is Professor in the Department of Mathematics and Natural Sciences at National University in Los Angeles, California.
Advanced Mathematics
Author: Stanley J. Farlow
Publisher: John Wiley & Sons
ISBN: 1119563488
Category : Mathematics
Languages : en
Pages : 475
Book Description
Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.
Publisher: John Wiley & Sons
ISBN: 1119563488
Category : Mathematics
Languages : en
Pages : 475
Book Description
Provides a smooth and pleasant transition from first-year calculus to upper-level mathematics courses in real analysis, abstract algebra and number theory Most universities require students majoring in mathematics to take a “transition to higher math” course that introduces mathematical proofs and more rigorous thinking. Such courses help students be prepared for higher-level mathematics course from their onset. Advanced Mathematics: A Transitional Reference provides a “crash course” in beginning pure mathematics, offering instruction on a blendof inductive and deductive reasoning. By avoiding outdated methods and countless pages of theorems and proofs, this innovative textbook prompts students to think about the ideas presented in an enjoyable, constructive setting. Clear and concise chapters cover all the essential topics students need to transition from the "rote-orientated" courses of calculus to the more rigorous "proof-orientated” advanced mathematics courses. Topics include sentential and predicate calculus, mathematical induction, sets and counting, complex numbers, point-set topology, and symmetries, abstract groups, rings, and fields. Each section contains numerous problems for students of various interests and abilities. Ideally suited for a one-semester course, this book: Introduces students to mathematical proofs and rigorous thinking Provides thoroughly class-tested material from the authors own course in transitioning to higher math Strengthens the mathematical thought process of the reader Includes informative sidebars, historical notes, and plentiful graphics Offers a companion website to access a supplemental solutions manual for instructors Advanced Mathematics: A Transitional Reference is a valuable guide for undergraduate students who have taken courses in calculus, differential equations, or linear algebra, but may not be prepared for the more advanced courses of real analysis, abstract algebra, and number theory that await them. This text is also useful for scientists, engineers, and others seeking to refresh their skills in advanced math.
Elements of Modern Algebra, International Edition
Author: Linda Gilbert
Publisher: Cengage Learning
ISBN: 9780495561385
Category : Algebra, Abstract
Languages : en
Pages : 456
Book Description
ELEMENTS OF MODERN ALGEBRA, 7e, INTERNATIONAL EDITION with its user-friendly format, provides you with the tools you need to get succeed in abstract algebra and develop mathematical maturity as a bridge to higher-level mathematics courses.. Strategy boxes give you guidance and explanations about techniques and enable you to become more proficient at constructing proofs. A summary of key words and phrases at the end of each chapter help you master the material. A reference section, symbolic marginal notes, an appendix, and numerous examples help you develop your problem solving skills.
Publisher: Cengage Learning
ISBN: 9780495561385
Category : Algebra, Abstract
Languages : en
Pages : 456
Book Description
ELEMENTS OF MODERN ALGEBRA, 7e, INTERNATIONAL EDITION with its user-friendly format, provides you with the tools you need to get succeed in abstract algebra and develop mathematical maturity as a bridge to higher-level mathematics courses.. Strategy boxes give you guidance and explanations about techniques and enable you to become more proficient at constructing proofs. A summary of key words and phrases at the end of each chapter help you master the material. A reference section, symbolic marginal notes, an appendix, and numerous examples help you develop your problem solving skills.
Introduction to Abstract Algebra, 4e Set
Author: W. Keith Nicholson
Publisher: Wiley
ISBN: 9781118296035
Category : Mathematics
Languages : en
Pages : 0
Book Description
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. The Fourth Edition features important concepts as well as specialized topics, including: The treatment of nilpotent groups, including the Frattini and Fitting subgroups Symmetric polynomials The proof of the fundamental theorem of algebra using symmetric polynomials The proof of Wedderburn's theorem on finite division rings The proof of the Wedderburn-Artin theorem Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises. Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.
Publisher: Wiley
ISBN: 9781118296035
Category : Mathematics
Languages : en
Pages : 0
Book Description
Praise for the Third Edition ". . . an expository masterpiece of the highest didactic value that has gained additional attractivity through the various improvements . . ."—Zentralblatt MATH The Fourth Edition of Introduction to Abstract Algebra continues to provide an accessible approach to the basic structures of abstract algebra: groups, rings, and fields. The book's unique presentation helps readers advance to abstract theory by presenting concrete examples of induction, number theory, integers modulo n, and permutations before the abstract structures are defined. Readers can immediately begin to perform computations using abstract concepts that are developed in greater detail later in the text. The Fourth Edition features important concepts as well as specialized topics, including: The treatment of nilpotent groups, including the Frattini and Fitting subgroups Symmetric polynomials The proof of the fundamental theorem of algebra using symmetric polynomials The proof of Wedderburn's theorem on finite division rings The proof of the Wedderburn-Artin theorem Throughout the book, worked examples and real-world problems illustrate concepts and their applications, facilitating a complete understanding for readers regardless of their background in mathematics. A wealth of computational and theoretical exercises, ranging from basic to complex, allows readers to test their comprehension of the material. In addition, detailed historical notes and biographies of mathematicians provide context for and illuminate the discussion of key topics. A solutions manual is also available for readers who would like access to partial solutions to the book's exercises. Introduction to Abstract Algebra, Fourth Edition is an excellent book for courses on the topic at the upper-undergraduate and beginning-graduate levels. The book also serves as a valuable reference and self-study tool for practitioners in the fields of engineering, computer science, and applied mathematics.