Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications

Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications PDF Author: Sang-wŏn Ko
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Organic transistors and solar cells offer the potential advantages of low-cost, large-scale fabrication by solution processing techniques, and compatibility with both flexible and lightweight plastic substrates. Continuous development of new organic materials has improved their performance, thus enabling the commercialization of these conducting polymers in recent years. However, understanding the relationship between polymer packing structures and mobilities is still lacking. Furthermore, to enable a polymer to serve as an effective donor material in bulk heterojunction (BHJ) solar cells, several important properties have to be considered, such as band gap, absorption coefficient, effective charge transport, and a relatively deep HOMO. Needless to say, careful balancing of these properties remains challenging. Thus, this thesis aims to gain a better understanding of materials design rules to address the above issues using two types of conjugated polymers. First, new donor-acceptor copolymers were designed and synthesized to gain insights into designing efficient donor materials in BHJ solar cells. Second, poly(3,4-disubstituted thiophene) derivatives were designed and synthesized to study relationships between structural design, packing, charge transport property, and solar cell performance. In the first part of my thesis, I have prepared vinylene linked co-polymers in order to achieve low bandgap polymers by extending [Pi]-conjugation lengths. I found that the hole mobilities of the polymers scaled with the molecular weights in these amorphous polymers. Optical absorption at longer wavelengths was improved by eliminating torsions along the polymer backbones. Current density (Jsc) in BHJ solar cells depended on the overall intensity of absorption and hole mobility of donor materials. Comparing to the amorphous vinylene linked co-polymers, charge carrier mobility could be enhanced by employing thienopyrazine based co-polymers, which contain rigid fused aromatic rings promoting well ordered inter-chain packing. Removing of the adjacent thiophene groups around the thienopyrazine acceptor core markedly increased the optical absorption of the polymer and raised its ionization potential, resulting in power conversion efficiency (PCE) of 1.57%. This investigation on the new co-polymers could provide a useful guideline for designing efficient donors for BHJ solar cells. In the second part of my thesis, I designed and synthesized polythiophene derivatives to understand structure-property relationships in detail. Despite their slightly larger band gaps, polythiophene derivatives are nonetheless important active materials due to their high absorption coefficients and high charge transport mobilities. Furthermore, their facile synthesis and ease of structural modifications with various substituents are the advantages of using polythiophene derivatives as model conjugated polymer systems. To examine the influence of backbone twisting on performance of transistors and BHJ solar cells, I systematically imposed twists within the conjugated backbones of poly(3,4-disubtituted thiophene (P34AT) using a unsubstituted thiophene spacer of varying sizes. When a moderate twist was introduced to the P34AT backbone, a 19% enhancement in the open-circuit voltage vs. poly(3-hexylthiopene) based devices and high PCE (4.2%) were achieved without sacrificing the short-circuit current density and the fill factor. Despite the high charge transport mobility (0.17 cm2/Vs), P34AT hardly showed [Pi]-[Pi] stacking in X-ray diffraction, suggesting that a strong [Pi]-[Pi] stacking is not always necessary for high charge carrier mobility; in which other potential polymer packing motifs (in addition to the edge-on structure) can lead to a high device performance. To gain further knowledge in structure-property relationships of the less explored 3,4-disubstituted polythiophene system, various P34AT derivatives were prepared and their opto-electronic property, packing structure, and device performance were studied. Among P34AT derivatives containing fused thiophene rings, a higher PCE was achieved with a benzodithiophene based polymer (PDHBDT) having a larger absorption coefficient, higher hole mobility, and deeper HOMO. The PDHBDT also exhibited a thermotropic phase transition behavior, leading to mobility up to 0.46 cm2/Vs where the polymer backbones adapt an edge-on lamellar packing structure. In the last part of this thesis, low band gap P34AT derivatives, which incorporate electron withdrawing groups, were prepared to improve photocurrent. However, I observed that a low absorption coefficient and a low hole mobility limited current density in solar cells. Thus, this indicates that low band gap polymers with strong absorption properties and good charge transports are critical towards molecular design for achieving high PCE. Collectively, through rational design and characterization of these novel polymers, this thesis has illustrated that better understanding of molecular design rules for engineering opto-electronic properties and packing behavior, will lead to higher device performance.

Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications

Solution Processable Organic Semiconducting Materials for Thin Film Transistors and Photovoltaic Applications PDF Author: Sang-wŏn Ko
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Organic transistors and solar cells offer the potential advantages of low-cost, large-scale fabrication by solution processing techniques, and compatibility with both flexible and lightweight plastic substrates. Continuous development of new organic materials has improved their performance, thus enabling the commercialization of these conducting polymers in recent years. However, understanding the relationship between polymer packing structures and mobilities is still lacking. Furthermore, to enable a polymer to serve as an effective donor material in bulk heterojunction (BHJ) solar cells, several important properties have to be considered, such as band gap, absorption coefficient, effective charge transport, and a relatively deep HOMO. Needless to say, careful balancing of these properties remains challenging. Thus, this thesis aims to gain a better understanding of materials design rules to address the above issues using two types of conjugated polymers. First, new donor-acceptor copolymers were designed and synthesized to gain insights into designing efficient donor materials in BHJ solar cells. Second, poly(3,4-disubstituted thiophene) derivatives were designed and synthesized to study relationships between structural design, packing, charge transport property, and solar cell performance. In the first part of my thesis, I have prepared vinylene linked co-polymers in order to achieve low bandgap polymers by extending [Pi]-conjugation lengths. I found that the hole mobilities of the polymers scaled with the molecular weights in these amorphous polymers. Optical absorption at longer wavelengths was improved by eliminating torsions along the polymer backbones. Current density (Jsc) in BHJ solar cells depended on the overall intensity of absorption and hole mobility of donor materials. Comparing to the amorphous vinylene linked co-polymers, charge carrier mobility could be enhanced by employing thienopyrazine based co-polymers, which contain rigid fused aromatic rings promoting well ordered inter-chain packing. Removing of the adjacent thiophene groups around the thienopyrazine acceptor core markedly increased the optical absorption of the polymer and raised its ionization potential, resulting in power conversion efficiency (PCE) of 1.57%. This investigation on the new co-polymers could provide a useful guideline for designing efficient donors for BHJ solar cells. In the second part of my thesis, I designed and synthesized polythiophene derivatives to understand structure-property relationships in detail. Despite their slightly larger band gaps, polythiophene derivatives are nonetheless important active materials due to their high absorption coefficients and high charge transport mobilities. Furthermore, their facile synthesis and ease of structural modifications with various substituents are the advantages of using polythiophene derivatives as model conjugated polymer systems. To examine the influence of backbone twisting on performance of transistors and BHJ solar cells, I systematically imposed twists within the conjugated backbones of poly(3,4-disubtituted thiophene (P34AT) using a unsubstituted thiophene spacer of varying sizes. When a moderate twist was introduced to the P34AT backbone, a 19% enhancement in the open-circuit voltage vs. poly(3-hexylthiopene) based devices and high PCE (4.2%) were achieved without sacrificing the short-circuit current density and the fill factor. Despite the high charge transport mobility (0.17 cm2/Vs), P34AT hardly showed [Pi]-[Pi] stacking in X-ray diffraction, suggesting that a strong [Pi]-[Pi] stacking is not always necessary for high charge carrier mobility; in which other potential polymer packing motifs (in addition to the edge-on structure) can lead to a high device performance. To gain further knowledge in structure-property relationships of the less explored 3,4-disubstituted polythiophene system, various P34AT derivatives were prepared and their opto-electronic property, packing structure, and device performance were studied. Among P34AT derivatives containing fused thiophene rings, a higher PCE was achieved with a benzodithiophene based polymer (PDHBDT) having a larger absorption coefficient, higher hole mobility, and deeper HOMO. The PDHBDT also exhibited a thermotropic phase transition behavior, leading to mobility up to 0.46 cm2/Vs where the polymer backbones adapt an edge-on lamellar packing structure. In the last part of this thesis, low band gap P34AT derivatives, which incorporate electron withdrawing groups, were prepared to improve photocurrent. However, I observed that a low absorption coefficient and a low hole mobility limited current density in solar cells. Thus, this indicates that low band gap polymers with strong absorption properties and good charge transports are critical towards molecular design for achieving high PCE. Collectively, through rational design and characterization of these novel polymers, this thesis has illustrated that better understanding of molecular design rules for engineering opto-electronic properties and packing behavior, will lead to higher device performance.

Solution-Processable Components for Organic Electronic Devices

Solution-Processable Components for Organic Electronic Devices PDF Author: Beata Luszczynska
Publisher: John Wiley & Sons
ISBN: 352734442X
Category : Technology & Engineering
Languages : en
Pages : 686

Get Book Here

Book Description
Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Solution-processable Organic Semiconducting Materials for Photovoltaic Applications

Solution-processable Organic Semiconducting Materials for Photovoltaic Applications PDF Author: Jianguo Mei
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Using diketopyrrolopyrrole (DPP) as an electron acceptor, amphiphilic discrete oligomers that can self-assemble into highly ordered nanostructures for organic field-effect transistors (OFETs) and molecular bulk-heterojunction solar cells (OPVs) were studied. Charge mobility as high as 4 x 10-3 cm2V-1s-1 was obtained from OFET measurement and PCEs of 0.7% were reported with a high fill factor of 0.58 in molecular BHJ solar cells with PCBM as an electron acceptor. A DPP-based thermocleavable polymer was also prepared and OPVs based on this polymer demonstrated an enhanced PCE of 1.44% upon cleavage. In chapter 6, isoindigo was introduced as an electron acceptor in [pi]-conjugated materials. Isoindigo-based oligothiophenes were prepared and used as donor materials in molecular bulkheterojunction OPVs and power conversion efficiencies up to 1.85% were achieved. Three isoindigo-based polymers were synthesized to validate the hypodissertation that charge mobility in conjugated polymers can be enhanced via enforcement of [pi]-[pi] interactions by means of introducing biphasic solubilizing groups. The results from SCLC modeling of J-V characteristics of single-carrier diodes are consistent with the hypodissertation presented where a nearly 10-fold increase in hole mobilities was observed for polymers with biphasic solubilizing group. In addition, a facile approach to isoindigo-based n-type conjugated polymers was also reported, in which the LUMO level as deep as -4.1 eV and deep HOMOs of ~6.0 eV were found. These polymers can be considered as an alternative to commonly used acceptors such as PCBM derivatives currently employed in polymer-based solar cell devices.

Solution-Processable Components for Organic Electronic Devices

Solution-Processable Components for Organic Electronic Devices PDF Author: Beata Luszczynska
Publisher: John Wiley & Sons
ISBN: 3527814949
Category : Technology & Engineering
Languages : en
Pages : 688

Get Book Here

Book Description
Provides first-hand insights into advanced fabrication techniques for solution processable organic electronics materials and devices The field of printable organic electronics has emerged as a technology which plays a major role in materials science research and development. Printable organic electronics soon compete with, and for specific applications can even outpace, conventional semiconductor devices in terms of performance, cost, and versatility. Printing techniques allow for large-scale fabrication of organic electronic components and functional devices for use as wearable electronics, health-care sensors, Internet of Things, monitoring of environment pollution and many others, yet-to-be-conceived applications. The first part of Solution-Processable Components for Organic Electronic Devices covers the synthesis of: soluble conjugated polymers; solution-processable nanoparticles of inorganic semiconductors; high-k nanoparticles by means of controlled radical polymerization; advanced blending techniques yielding novel materials with extraordinary properties. The book also discusses photogeneration of charge carriers in nanostructured bulk heterojunctions and charge carrier transport in multicomponent materials such as composites and nanocomposites as well as photovoltaic devices modelling. The second part of the book is devoted to organic electronic devices, such as field effect transistors, light emitting diodes, photovoltaics, photodiodes and electronic memory devices which can be produced by solution-based methods, including printing and roll-to-roll manufacturing. The book provides in-depth knowledge for experienced researchers and for those entering the field. It comprises 12 chapters focused on: ? novel organic electronics components synthesis and solution-based processing techniques ? advanced analysis of mechanisms governing charge carrier generation and transport in organic semiconductors and devices ? fabrication techniques and characterization methods of organic electronic devices Providing coverage of the state of the art of organic electronics, Solution-Processable Components for Organic Electronic Devices is an excellent book for materials scientists, applied physicists, engineering scientists, and those working in the electronics industry.

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications

Chemical Solution Synthesis for Materials Design and Thin Film Device Applications PDF Author: Soumen Das
Publisher: Elsevier
ISBN: 0128197188
Category : Technology & Engineering
Languages : en
Pages : 746

Get Book Here

Book Description
Chemical Solution Synthesis for Materials Design and Thin Film Device Applications presents current research on wet chemical techniques for thin-film based devices. Sections cover the quality of thin films, types of common films used in devices, various thermodynamic properties, thin film patterning, device configuration and applications. As a whole, these topics create a roadmap for developing new materials and incorporating the results in device fabrication. This book is suitable for graduate, undergraduate, doctoral students, and researchers looking for quick guidance on material synthesis and device fabrication through wet chemical routes. Provides the different wet chemical routes for materials synthesis, along with the most relevant thin film structured materials for device applications Discusses patterning and solution processing of inorganic thin films, along with solvent-based processing techniques Includes an overview of key processes and methods in thin film synthesis, processing and device fabrication, such as nucleation, lithography and solution processing

Organic Semiconductors for Optoelectronics

Organic Semiconductors for Optoelectronics PDF Author: Hiroyoshi Naito
Publisher: John Wiley & Sons
ISBN: 1119146100
Category : Science
Languages : en
Pages : 388

Get Book Here

Book Description
Comprehensive coverage of organic electronics, including fundamental theory, basic properties, characterization methods, device physics, and future trends Organic semiconductor materials have vast commercial potential for a wide range of applications, from self-emitting OLED displays and solid-state lighting to plastic electronics and organic solar cells. As research in organic optoelectronic devices continues to expand at an unprecedented rate, organic semiconductors are being applied to flexible displays, biosensors, and other cost-effective green devices in ways not possible with conventional inorganic semiconductors. Organic Semiconductors for Optoelectronics is an up-to-date review of the both the fundamental theory and latest research and development advances in organic semiconductors. Featuring contributions from an international team of experts, this comprehensive volume covers basic properties of organic semiconductors, characterization techniques, device physics, and future trends in organic device development. Detailed chapters provide key information on the device physics of organic field-effect transistors, organic light-emitting diodes, organic solar cells, organic photosensors, and more. This authoritative resource: Provides a clear understanding of the optoelectronic properties of organic semiconductors and their influence to overall device performance Explains the theories behind relevant mechanisms in organic semiconducting materials and in organic devices Discusses current and future trends and challenges in the development of organic optoelectronic devices Reviews electronic properties, device mechanisms, and characterization techniques of organic semiconducting materials Covers theoretical concepts of optical properties of organic semiconductors including fluorescent, phosphorescent, and thermally-assisted delayed fluorescent emitters An important new addition to the Wiley Series in Materials for Electronic & Optoelectronic Applications, Organic Semiconductors for Optoelectronics bridges the gap between advanced books and undergraduate textbooks on semiconductor physics and solid-state physics. It is essential reading for academic researchers, graduate students, and industry professionals involved in organic electronics, materials science, thin film devices, and optoelectronics research and development.

Development of New Building Blocks for Constructing Novel Polymer Semiconductors for Organic Thin Film Transistors

Development of New Building Blocks for Constructing Novel Polymer Semiconductors for Organic Thin Film Transistors PDF Author: Zhuangqing Yan
Publisher:
ISBN:
Category :
Languages : en
Pages : 101

Get Book Here

Book Description
Organic semiconductors are envisioned to have widespread applications in flexible displays, radio-frequency identification (RFID) tags, bio- and chem-sensors, as well as organic solar cells. Polymer semiconductors are particularly suitable for the low-cost manufacture of organic electronics using printing techniques due to their excellent solution processability and mechanical properties. This work focuses on the development of two novel building blocks, IBDF and DTA, which can be used for the construction of high performance organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Two copolymers, P6-IBDF-T and P5-IBDF-T, and a homopolymer P6-IBDF were prepared using the IBDF building block. Copolymer P6-IBDF-T has been prepared via the Stille-coupling polymerization. This polymer exhibits a small band gap of 1.36 eV with HOMO/LUMO energy level of -5.69 eV/-4.43 eV. P6-IBDF-T showed stable electron transport performance in encapsulated thin film transistors and ambipolar transport performance in non-encapsulated TFTs. Balanced hole/electron mobilities of up to 8.2 ×10-3/1.0 ×10-2 cm2V-1s-1 was achieved in bottom-contact, bottom-gate organic thin film transistors. In addition, the broad absorption of the polymer over the UV-Vis range suggested that this polymer is suitable for applications in solar cells. The effect of conjugation on mobility and UV-vis spectra of the polymer was studied by comparing P5-IBDF-T with P6-IBDF-T. The ideal of indirect electron transition was proposed to explain the difference between UV-Vis light absorption spectra for these two polymers. DTA building block was used to construct four D-A copolymers, namely PDTA-T, PDTA-BT, PDAT-BTV, and PDTA-TT. These polymers were characterized by UV-Vis, CV, DSC, TGA, AFM and XRD. Device performance was also investigated on OTFTs. The device performance of DTA based polymer increased as the area of electron donor increase from T in PDTA-T to BTV in PDTA-BTV. PDTA-BTV exhibits hole mobility of 1.3×10-3 cm2 V-1 s-1 with Ion/Ioff value of ~103-4 in bottom-contact, bottom-gate organic thin film transistors. All DTA based copolymers exhibited small optical bandgaps (1.18 - 1.27 eV) and required none or moderate thermal treatment during fabrication process. These make them promising candidates for cost-effective OPV applications.

Semiconducting Polymers

Semiconducting Polymers PDF Author: Georges Hadziioannou
Publisher: John Wiley & Sons
ISBN: 3527312714
Category : Technology & Engineering
Languages : en
Pages : 786

Get Book Here

Book Description
The field of semiconducting polymers has attracted many researchers from a diversity of disciplines. Printed circuitry, flexible electronics and displays are already migrating from laboratory successes to commercial applications, but even now fundamental knowledge is deficient concerning some of the basic phenomena that so markedly influence a device's usefulness and competitiveness. This two-volume handbook describes the various approaches to doped and undoped semiconducting polymers taken with the aim to provide vital understanding of how to control the properties of these fascinating organic materials. Prominent researchers from the fields of synthetic chemistry, physical chemistry, engineering, computational chemistry, theoretical physics, and applied physics cover all aspects from compounds to devices. Since the first edition was published in 2000, significant findings and successes have been achieved in the field, and especially handheld electronic gadgets have become billion-dollar markets that promise a fertile application ground for flexible, lighter and disposable alternatives to classic silicon circuitry. The second edition brings readers up-to-date on cutting edge research in this field.

Large Area and Flexible Electronics

Large Area and Flexible Electronics PDF Author: Mario Caironi
Publisher: John Wiley & Sons
ISBN: 3527679995
Category : Technology & Engineering
Languages : en
Pages : 588

Get Book Here

Book Description
From materials to applications, this ready reference covers the entire value chain from fundamentals via processing right up to devices, presenting different approaches to large-area electronics, thus enabling readers to compare materials, properties and performance. Divided into two parts, the first focuses on the materials used for the electronic functionality, covering organic and inorganic semiconductors, including vacuum and solution-processed metal-oxide semiconductors, nanomembranes and nanocrystals, as well as conductors and insulators. The second part reviews the devices and applications of large-area electronics, including flexible and ultra-high-resolution displays, light-emitting transistors, organic and inorganic photovoltaics, large-area imagers and sensors, non-volatile memories and radio-frequency identification tags. With its academic and industrial viewpoints, this volume provides in-depth knowledge for experienced researchers while also serving as a first-stop resource for those entering the field.

Organic Electronics II

Organic Electronics II PDF Author: Hagen Klauk
Publisher: John Wiley & Sons
ISBN: 3527326472
Category : Technology & Engineering
Languages : en
Pages : 443

Get Book Here

Book Description
Like its predecessor this book is devoted to the materials, manufacturing and applications aspects of organic thin-film transistors. Once again authored by the most renowned experts from this fascinating and fast-moving area of research, it offers a joint perspective both broad and in-depth on the latest developments in the areas of materials chemistry, transport physics, materials characterization, manufacturing technology, and circuit integration of organic transistors. With its many figures and detailed index, this book once again also serves as a ready reference.