Solution of Variational Inequalities in Mechanics

Solution of Variational Inequalities in Mechanics PDF Author: Ivan Hlavacek
Publisher: Springer Science & Business Media
ISBN: 1461210488
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
The idea for this book was developed in the seminar on problems of con tinuum mechanics, which has been active for more than twelve years at the Faculty of Mathematics and Physics, Charles University, Prague. This seminar has been pursuing recent directions in the development of mathe matical applications in physics; especially in continuum mechanics, and in technology. It has regularly been attended by upper division and graduate students, faculty, and scientists and researchers from various institutions from Prague and elsewhere. These seminar participants decided to publish in a self-contained monograph the results of their individual and collective efforts in developing applications for the theory of variational inequalities, which is currently a rapidly growing branch of modern analysis. The theory of variational inequalities is a relatively young mathematical discipline. Apparently, one of the main bases for its development was the paper by G. Fichera (1964) on the solution of the Signorini problem in the theory of elasticity. Later, J. L. Lions and G. Stampacchia (1967) laid the foundations of the theory itself. Time-dependent inequalities have primarily been treated in works of J. L. Lions and H. Bnlzis. The diverse applications of the variational in equalities theory are the topics of the well-known monograph by G. Du vaut and J. L. Lions, Les iniquations en micanique et en physique (1972).

Solution of Variational Inequalities in Mechanics

Solution of Variational Inequalities in Mechanics PDF Author: Ivan Hlavacek
Publisher: Springer Science & Business Media
ISBN: 1461210488
Category : Science
Languages : en
Pages : 285

Get Book Here

Book Description
The idea for this book was developed in the seminar on problems of con tinuum mechanics, which has been active for more than twelve years at the Faculty of Mathematics and Physics, Charles University, Prague. This seminar has been pursuing recent directions in the development of mathe matical applications in physics; especially in continuum mechanics, and in technology. It has regularly been attended by upper division and graduate students, faculty, and scientists and researchers from various institutions from Prague and elsewhere. These seminar participants decided to publish in a self-contained monograph the results of their individual and collective efforts in developing applications for the theory of variational inequalities, which is currently a rapidly growing branch of modern analysis. The theory of variational inequalities is a relatively young mathematical discipline. Apparently, one of the main bases for its development was the paper by G. Fichera (1964) on the solution of the Signorini problem in the theory of elasticity. Later, J. L. Lions and G. Stampacchia (1967) laid the foundations of the theory itself. Time-dependent inequalities have primarily been treated in works of J. L. Lions and H. Bnlzis. The diverse applications of the variational in equalities theory are the topics of the well-known monograph by G. Du vaut and J. L. Lions, Les iniquations en micanique et en physique (1972).

Variational and Quasi-Variational Inequalities in Mechanics

Variational and Quasi-Variational Inequalities in Mechanics PDF Author: Alexander S. Kravchuk
Publisher: Springer Science & Business Media
ISBN: 1402063776
Category : Technology & Engineering
Languages : en
Pages : 337

Get Book Here

Book Description
The essential aim of this book is to consider a wide set of problems arising in the mathematical modeling of mechanical systems under unilateral constraints. In these investigations elastic and non-elastic deformations, friction and adhesion phenomena are taken into account. All the necessary mathematical tools are given: local boundary value problem formulations, construction of variational equations and inequalities and their transition to minimization problems, existence and uniqueness theorems, and variational transformations (Friedrichs and Young-Fenchel-Moreau) to dual and saddle-point search problems.

Variational Inequalities and Flow in Porous Media

Variational Inequalities and Flow in Porous Media PDF Author: Michel Chipot
Publisher:
ISBN:
Category : Fluid dynamics
Languages : en
Pages : 140

Get Book Here

Book Description


Variational Inequalities and Frictional Contact Problems

Variational Inequalities and Frictional Contact Problems PDF Author: Anca Capatina
Publisher: Springer
ISBN: 3319101633
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Variational Inequalities and Frictional Contact Problems contains a carefully selected collection of results on elliptic and evolutionary quasi-variational inequalities including existence, uniqueness, regularity, dual formulations, numerical approximations and error estimates ones. By using a wide range of methods and arguments, the results are presented in a constructive way, with clarity and well justified proofs. This approach makes the subjects accessible to mathematicians and applied mathematicians. Moreover, this part of the book can be used as an excellent background for the investigation of more general classes of variational inequalities. The abstract variational inequalities considered in this book cover the variational formulations of many static and quasi-static contact problems. Based on these abstract results, in the last part of the book, certain static and quasi-static frictional contact problems in elasticity are studied in an almost exhaustive way. The readers will find a systematic and unified exposition on classical, variational and dual formulations, existence, uniqueness and regularity results, finite element approximations and related optimal control problems. This part of the book is an update of the Signorini problem with nonlocal Coulomb friction, a problem little studied and with few results in the literature. Also, in the quasi-static case, a control problem governed by a bilateral contact problem is studied. Despite the theoretical nature of the presented results, the book provides a background for the numerical analysis of contact problems. The materials presented are accessible to both graduate/under graduate students and to researchers in applied mathematics, mechanics, and engineering. The obtained results have numerous applications in mechanics, engineering and geophysics. The book contains a good amount of original results which, in this unified form, cannot be found anywhere else.

Hemivariational Inequalities

Hemivariational Inequalities PDF Author: Panagiotis D. Panagiotopoulos
Publisher: Springer Science & Business Media
ISBN: 3642516777
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
The aim of the present book is the formulation, mathematical study and numerical treatment of static and dynamic problems in mechanics and engineering sciences involving nonconvex and nonsmooth energy functions, or nonmonotone and multivalued stress-strain laws. Such problems lead to a new type of variational forms, the hemivariational inequalities, which also lead to multivalued differential or integral equations. Innovative numerical methods are presented for the treament of realistic engineering problems. This book is the first to deal with variational theory of engineering problems involving nonmonotone multivalue realations, their mechanical foundation, their mathematical study (existence and certain approximation results) and the corresponding eigenvalue and optimal control problems. All the numerical applications give innovative answers to as yet unsolved or partially solved engineering problems, e.g. the adhesive contact in cracks, the delamination problem, the sawtooth stress-strain laws in composites, the shear connectors in composite beams, the semirigid connections in steel structures, the adhesive grasping in robotics, etc. The book closes with the consideration of hemivariational inequalities for fractal type geometries and with the neural network approach to the numerical treatment of hemivariational inequalities.

Solution of Variational Inequalities in Mechanics

Solution of Variational Inequalities in Mechanics PDF Author: Ivan Hlaváček
Publisher:
ISBN: 9783540965978
Category : Continuum mechanics
Languages : en
Pages : 275

Get Book Here

Book Description


Variational-Hemivariational Inequalities with Applications

Variational-Hemivariational Inequalities with Applications PDF Author: Mircea Sofonea
Publisher: CRC Press
ISBN: 1351649299
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
This research monograph represents an outcome of the cross-fertilization between nonlinear functional analysis and mathematical modelling, and demonstrates its application to solid and contact mechanics. Based on authors’ original results, it introduces a general fixed point principle and its application to various nonlinear problems in analysis and mechanics. The classes of history-dependent operators and almost history-dependent operators are exposed in a large generality. A systematic and unified presentation contains a carefully-selected collection of new results on variational-hemivariational inequalities with or without unilateral constraints. A wide spectrum of static, quasistatic, dynamic contact problems for elastic, viscoelastic and viscoplastic materials illustrates the applicability of these theoretical results. Written for mathematicians, applied mathematicians, engineers and scientists, it is also a valuable tool for graduate students and researchers in nonlinear analysis, mathematical modelling, mechanics of solids, and contact mechanics.

Numerical Analysis of Variational Inequalities

Numerical Analysis of Variational Inequalities PDF Author: R. Trémolières
Publisher: Elsevier
ISBN: 0080875297
Category : Mathematics
Languages : en
Pages : 807

Get Book Here

Book Description
Numerical Analysis of Variational Inequalities

Contact Problems in Elasticity

Contact Problems in Elasticity PDF Author: N. Kikuchi
Publisher: SIAM
ISBN: 9781611970845
Category : Science
Languages : en
Pages : 508

Get Book Here

Book Description
The contact of one deformable body with another lies at the heart of almost every mechanical structure. Here, in a comprehensive treatment, two of the field's leading researchers present a systematic approach to contact problems. Using variational formulations, Kikuchi and Oden derive a multitude of new results, both for classical problems and for nonlinear problems involving large deflections and buckling of thin plates with unilateral supports, dry friction with nonclassical laws, large elastic and elastoplastic deformations with frictional contact, dynamic contacts with dynamic frictional effects, and rolling contacts. This method exposes properties of solutions obscured by classical methods, and it provides a basis for the development of powerful numerical schemes. Among the novel results presented here are algorithms for contact problems with nonlinear and nonlocal friction, and very effective algorithms for solving problems involving the large elastic deformation of hyperelastic bodies with general contact conditions. Includes detailed discussion of numerical methods for nonlinear materials with unilateral contact and friction, with examples of metalforming simulations. Also presents algorithms for the finite deformation rolling contact problem, along with a discussion of numerical examples.

Equilibrium Models and Variational Inequalities

Equilibrium Models and Variational Inequalities PDF Author: Igor Konnov
Publisher: Elsevier Science Limited
ISBN: 9780444530301
Category : Mathematics
Languages : en
Pages : 235

Get Book Here

Book Description
The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences. - Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field - Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models - Covers the basics of theory and solution methods both for the complementarity and variational inequality problems - The methods are illustrated by applications and exercises to economic equilibrium models