Author: Claes Johnson
Publisher: Courier Corporation
ISBN: 0486131599
Category : Mathematics
Languages : en
Pages : 290
Book Description
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Numerical Solution of Partial Differential Equations by the Finite Element Method
Author: Claes Johnson
Publisher: Courier Corporation
ISBN: 0486131599
Category : Mathematics
Languages : en
Pages : 290
Book Description
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Publisher: Courier Corporation
ISBN: 0486131599
Category : Mathematics
Languages : en
Pages : 290
Book Description
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
The Numerical Solution of Integral Equations of the Second Kind
Author: Kendall E. Atkinson
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Publisher: Cambridge University Press
ISBN: 0521583918
Category : Mathematics
Languages : en
Pages : 572
Book Description
This book provides an extensive introduction to the numerical solution of a large class of integral equations.
Numerical Solution of Integral Equations
Author: Michael A. Golberg
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428
Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.
Publisher: Springer Science & Business Media
ISBN: 1489925937
Category : Mathematics
Languages : en
Pages : 428
Book Description
In 1979, I edited Volume 18 in this series: Solution Methods for Integral Equations: Theory and Applications. Since that time, there has been an explosive growth in all aspects of the numerical solution of integral equations. By my estimate over 2000 papers on this subject have been published in the last decade, and more than 60 books on theory and applications have appeared. In particular, as can be seen in many of the chapters in this book, integral equation techniques are playing an increas ingly important role in the solution of many scientific and engineering problems. For instance, the boundary element method discussed by Atkinson in Chapter 1 is becoming an equal partner with finite element and finite difference techniques for solving many types of partial differential equations. Obviously, in one volume it would be impossible to present a complete picture of what has taken place in this area during the past ten years. Consequently, we have chosen a number of subjects in which significant advances have been made that we feel have not been covered in depth in other books. For instance, ten years ago the theory of the numerical solution of Cauchy singular equations was in its infancy. Today, as shown by Golberg and Elliott in Chapters 5 and 6, the theory of polynomial approximations is essentially complete, although many details of practical implementation remain to be worked out.
Finite Element Methods for Integrodifferential Equations
Author: Chuanmiao Chen
Publisher: World Scientific
ISBN: 9789810232634
Category : Mathematics
Languages : en
Pages : 294
Book Description
Recently, there has appeared a new type of evaluating partial differential equations with Volterra integral operators in various practical areas. Such equations possess new physical and mathematical properties. This monograph systematically discusses application of the finite element methods to numerical solution of integrodifferential equations. It will be useful for numerical analysts, mathematicians, physicists and engineers. Advanced undergraduates and graduate students should also find it beneficial.
Publisher: World Scientific
ISBN: 9789810232634
Category : Mathematics
Languages : en
Pages : 294
Book Description
Recently, there has appeared a new type of evaluating partial differential equations with Volterra integral operators in various practical areas. Such equations possess new physical and mathematical properties. This monograph systematically discusses application of the finite element methods to numerical solution of integrodifferential equations. It will be useful for numerical analysts, mathematicians, physicists and engineers. Advanced undergraduates and graduate students should also find it beneficial.
Automated Solution of Differential Equations by the Finite Element Method
Author: Anders Logg
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Publisher: Springer Science & Business Media
ISBN: 3642230997
Category : Computers
Languages : en
Pages : 723
Book Description
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Boundary Integral Equations
Author: George C. Hsiao
Publisher: Springer Nature
ISBN: 3030711277
Category : Mathematics
Languages : en
Pages : 783
Book Description
This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.
Publisher: Springer Nature
ISBN: 3030711277
Category : Mathematics
Languages : en
Pages : 783
Book Description
This is the second edition of the book which has two additional new chapters on Maxwell’s equations as well as a section on properties of solution spaces of Maxwell’s equations and their trace spaces. These two new chapters, which summarize the most up-to-date results in the literature for the Maxwell’s equations, are sufficient enough to serve as a self-contained introductory book on the modern mathematical theory of boundary integral equations in electromagnetics. The book now contains 12 chapters and is divided into two parts. The first six chapters present modern mathematical theory of boundary integral equations that arise in fundamental problems in continuum mechanics and electromagnetics based on the approach of variational formulations of the equations. The second six chapters present an introduction to basic classical theory of the pseudo-differential operators. The aforementioned corresponding boundary integral operators can now be recast as pseudo-differential operators. These serve as concrete examples that illustrate the basic ideas of how one may apply the theory of pseudo-differential operators and their calculus to obtain additional properties for the corresponding boundary integral operators. These two different approaches are complementary to each other. Both serve as the mathematical foundation of the boundary element methods, which have become extremely popular and efficient computational tools for boundary problems in applications. This book contains a wide spectrum of boundary integral equations arising in fundamental problems in continuum mechanics and electromagnetics. The book is a major scholarly contribution to the modern approaches of boundary integral equations, and should be accessible and useful to a large community of advanced graduate students and researchers in mathematics, physics, and engineering.
Numerical Solution of Differential Equations
Author: Zhilin Li
Publisher: Cambridge University Press
ISBN: 1107163226
Category : Mathematics
Languages : en
Pages : 305
Book Description
A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.
Publisher: Cambridge University Press
ISBN: 1107163226
Category : Mathematics
Languages : en
Pages : 305
Book Description
A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.
Boundary Value Problems of Mathematical Physics
Author: Ivar Stakgold
Publisher: SIAM
ISBN: 1611972388
Category : Science
Languages : en
Pages : 1156
Book Description
For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory?subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.
Publisher: SIAM
ISBN: 1611972388
Category : Science
Languages : en
Pages : 1156
Book Description
For more than 30 years, this two-volume set has helped prepare graduate students to use partial differential equations and integral equations to handle significant problems arising in applied mathematics, engineering, and the physical sciences. Originally published in 1967, this graduate-level introduction is devoted to the mathematics needed for the modern approach to boundary value problems using Green's functions and using eigenvalue expansions. Now a part of SIAM's Classics series, these volumes contain a large number of concrete, interesting examples of boundary value problems for partial differential equations that cover a variety of applications that are still relevant today. For example, there is substantial treatment of the Helmholtz equation and scattering theory?subjects that play a central role in contemporary inverse problems in acoustics and electromagnetic theory.
Green's Function Integral Equation Methods in Nano-Optics
Author: Thomas M. Søndergaard
Publisher: CRC Press
ISBN: 1351260197
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics
Publisher: CRC Press
ISBN: 1351260197
Category : Technology & Engineering
Languages : en
Pages : 418
Book Description
This book gives a comprehensive introduction to Green’s function integral equation methods (GFIEMs) for scattering problems in the field of nano-optics. First, a brief review is given of the most important theoretical foundations from electromagnetics, optics, and scattering theory, including theory of waveguides, Fresnel reflection, and scattering, extinction, and absorption cross sections. This is followed by a presentation of different types of GFIEMs of increasing complexity for one-, two-, and three-dimensional scattering problems. In GFIEMs, the electromagnetic field at any position is directly related to the field at either the inside or the surface of a scattering object placed in a reference structure. The properties of the reference structure, and radiating or periodic boundary conditions, are automatically taken care of via the choice of Green’s function. This book discusses in detail how to solve the integral equations using either simple or higher-order finite-element-based methods; how to calculate the relevant Green’s function for different reference structures and choices of boundary conditions; and how to calculate near-fields, optical cross sections, and the power emitted by a local source. Solution strategies for large structures are discussed based on either transfer-matrix-approaches or the conjugate gradient algorithm combined with the Fast Fourier Transform. Special attention is given to reducing the computational problem for three-dimensional structures with cylindrical symmetry by using cylindrical harmonic expansions. Each presented method is accompanied by examples from nano-optics, including: resonant metal nano-particles placed in a homogeneous medium or on a surface or waveguide; a microstructured gradient-index-lens; the Purcell effect for an emitter in a photonic crystal; the excitation of surface plasmon polaritons by second-harmonic generation in a polymer fiber placed on a thin metal film; and anti-reflective, broadband absorbing or resonant surface microstructures. Each presented method is also accompanied by guidelines for software implementation and exercises. Features Comprehensive introduction to Green’s function integral equation methods for scattering problems in the field of nano-optics Detailed explanation of how to discretize and solve integral equations using simple and higher-order finite-element approaches Solution strategies for large structures Guidelines for software implementation and exercises Broad selection of examples of scattering problems in nano-optics
Integral Equations
Author: Wolfgang Hackbusch
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.
Publisher: Birkhäuser
ISBN: 3034892152
Category : Mathematics
Languages : en
Pages : 377
Book Description
The theory of integral equations has been an active research field for many years and is based on analysis, function theory, and functional analysis. On the other hand, integral equations are of practical interest because of the «boundary integral equation method», which transforms partial differential equations on a domain into integral equations over its boundary. This book grew out of a series of lectures given by the author at the Ruhr-Universitat Bochum and the Christian-Albrecht-Universitat zu Kiel to students of mathematics. The contents of the first six chapters correspond to an intensive lecture course of four hours per week for a semester. Readers of the book require background from analysis and the foundations of numeri cal mathematics. Knowledge of functional analysis is helpful, but to begin with some basic facts about Banach and Hilbert spaces are sufficient. The theoretical part of this book is reduced to a minimum; in Chapters 2, 4, and 5 more importance is attached to the numerical treatment of the integral equations than to their theory. Important parts of functional analysis (e. g. , the Riesz-Schauder theory) are presented without proof. We expect the reader either to be already familiar with functional analysis or to become motivated by the practical examples given here to read a book about this topic. We recall that also from a historical point of view, functional analysis was initially stimulated by the investigation of integral equations.