Solution of Crack Problems

Solution of Crack Problems PDF Author: D.A. Hills
Publisher: Springer Science & Business Media
ISBN: 9401586489
Category : Science
Languages : en
Pages : 314

Get Book Here

Book Description
This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself.

Solution of Crack Problems

Solution of Crack Problems PDF Author: D.A. Hills
Publisher: Springer Science & Business Media
ISBN: 9401586489
Category : Science
Languages : en
Pages : 314

Get Book Here

Book Description
This book is concerned with the numerical solution of crack problems. The techniques to be developed are particularly appropriate when cracks are relatively short, and are growing in the neighbourhood of some stress raising feature, causing a relatively steep stress gradient. It is therefore practicable to represent the geometry in an idealised way, so that a precise solution may be obtained. This contrasts with, say, the finite element method in which the geometry is modelled exactly, but the subsequent solution is approximate, and computationally more taxing. The family of techniques presented in this book, based loosely on the pioneering work of Eshelby in the late 1950's, and developed by Erdogan, Keer, Mura and many others cited in the text, present an attractive alternative. The basic idea is to use the superposition of the stress field present in the unfiawed body, together with an unknown distribution of 'strain nuclei' (in this book, the strain nucleus employed is the dislocation), chosen so that the crack faces become traction-free. The solution used for the stress field for the nucleus is chosen so that other boundary conditions are satisfied. The technique is therefore efficient, and may be used to model the evolution of a developing crack in two or three dimensions. Solution techniques are described in some detail, and the book should be readily accessible to most engineers, whilst preserving the rigour demanded by the researcher who wishes to develop the method itself.

Methods of Analysis and Solutions of Crack Problems

Methods of Analysis and Solutions of Crack Problems PDF Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9401722609
Category : Science
Languages : en
Pages : 562

Get Book Here

Book Description
It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

Methods of Analysis and Solutions of Crack Problems

Methods of Analysis and Solutions of Crack Problems PDF Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9789001798604
Category : Science
Languages : en
Pages : 578

Get Book Here

Book Description
It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

Cracked it!

Cracked it! PDF Author: Bernard Garrette
Publisher: Springer
ISBN: 3319893750
Category : Business & Economics
Languages : en
Pages : 295

Get Book Here

Book Description
Solving complex problems and selling their solutions is critical for personal and organizational success. For most of us, however, it doesn’t come naturally and we haven’t been taught how to do it well. Research shows a host of pitfalls trips us up when we try: We’re quick to believe we understand a situation and jump to a flawed solution. We seek to confirm our hypotheses and ignore conflicting evidence. We view challenges incompletely through the frameworks we know instead of with a fresh pair of eyes. And when we communicate our recommendations, we forget our reasoning isn’t obvious to our audience. How can we do it better? In Cracked It!, seasoned strategy professors and consultants Bernard Garrette, Corey Phelps and Olivier Sibony present a rigorous and practical four-step approach to overcome these pitfalls. Building on tried-and-tested (but rarely revealed) methods of top strategy consultants, research in cognitive psychology, and the latest advances in design thinking, they provide a step-by-step process and toolkit that will help readers tackle any challenging business problem. Using compelling stories and detailed case examples, the authors guide readers through each step in the process: from how to state, structure and then solve problems to how to sell the solutions. Written in an engaging style by a trio of experts with decades of experience researching, teaching and consulting on complex business problems, this book will be an indispensable manual for anyone interested in creating value by helping their organizations crack the problems that matter most.

Multiple Crack Problems in Elasticity

Multiple Crack Problems in Elasticity PDF Author: Y. Z. Chen
Publisher: Wit Pr/Computational Mechanics
ISBN: 9781853129032
Category : Technology & Engineering
Languages : en
Pages : 336

Get Book Here

Book Description
The authors investigate various integral equations for multiple crack problems in plane elasticity. Formulation of the problems is based on relevant elementary solutions in which the complex variable function method is used.

Elastodynamic Crack Problems

Elastodynamic Crack Problems PDF Author: George C. Sih
Publisher: Springer Science & Business Media
ISBN: 9789028601567
Category : Science
Languages : en
Pages : 410

Get Book Here

Book Description


Structural Integrity of Fasteners

Structural Integrity of Fasteners PDF Author: Pir M. Toor
Publisher: ASTM International
ISBN: 0803120176
Category : Fasteners
Languages : en
Pages : 208

Get Book Here

Book Description


Fracture Mechanics in Layered and Graded Solids

Fracture Mechanics in Layered and Graded Solids PDF Author: Tian Xiaohong
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110369559
Category : Science
Languages : en
Pages : 328

Get Book Here

Book Description
Mechanical responses of solid materials are governed by their material properties. The solutions for estimating and predicting the mechanical responses are extremely difficult, in particular for non-homogeneous materials. Among these, there is a special type of materials whose properties are variable only along one direction, defined as graded materials or functionally graded materials (FGMs). Examples are plant stems and bones. Artificial graded materials are widely used in mechanical engineering, chemical engineering, biological engineering, and electronic engineering. This work covers and develops boundary element methods (BEM) to investigate the properties of realistic graded materials. It is a must have for practitioners and researchers in materials science, both academic and in industry. Covers analysis of properties of graded materials. Presents solutions based methods for analysis of fracture mechanics. Presents two types of boundary element methods for layered isotropic materials and transversely isotropic materials. Written by two authors with extensive international experience in academic and private research and engineering.

Thermoelastic Fracture Mechanics

Thermoelastic Fracture Mechanics PDF Author: Vera Petrova
Publisher: Materials Research Forum LLC
ISBN: 1644902958
Category : Technology & Engineering
Languages : en
Pages : 277

Get Book Here

Book Description
The book deals with the thermal and mechanical fracture of functionally graded materials on homogeneous substrate (FGM/H) structures. Emphasis is placed on multiple crack interactions. FGMs have a wide range of engineering applications; especially in thermal barrier coatings. Potentially desirable thermal and mechanical properties of functionally graded coatings (FGCs) are analyzed as well as available real material combinations, e.g. (ceramic/metal)/metal. Keywords: Thermal Fracture, Mechanical Fracture, Functionally Graded/Homogeneous Bimaterial, Thermo-Mechanical Loading, Mathematical Modelling, Thermal Stress Intensity, Fracture Criteria, Crack Closure, Systems of Cracks, Edge Cracks, Internal Cracks, Cracks Imitating a Curved Interface, Multiple Cracks Interaction, Thermal Barrier Coating, Thermal Fracture Resistance.

Inverse and Crack Identification Problems in Engineering Mechanics

Inverse and Crack Identification Problems in Engineering Mechanics PDF Author: Georgios E. Stavroulakis
Publisher: Springer Science & Business Media
ISBN: 9780792366904
Category : Computers
Languages : en
Pages : 248

Get Book Here

Book Description
Written for structural and mechanical engineers involved in nondestructive testing and quality control projects as well as research engineers and applied mathematicians, this monograph provides all the required material for the mathematical and numerical modeling of crack identification testing procedures in statis and dynamics. It uses boundary element techniques for delicate computational mechanics modeling and considers both elastostatic and harmonic or transient dynamic problems. Inverse problems are formulated as output error minimization problems and are theoretically studied as a bilevel optimization problem. Beyond classical numerical optimization, soft computing tools (neural networks and genetic algorithms) and filter algorithms are used for the numerical solution. Stavroulakis teaches applied mathematics and civil engineering at the Technical University Carolo Wilhelmina. c. Book News Inc.