Solitons in Field Theory and Nonlinear Analysis

Solitons in Field Theory and Nonlinear Analysis PDF Author: Yisong Yang
Publisher: Springer Science & Business Media
ISBN: 1475765487
Category : Mathematics
Languages : en
Pages : 571

Get Book Here

Book Description
There are two approaches in the study of differential equations of field theory. The first, finding closed-form solutions, works only for a narrow category of problems. Written by a well-known active researcher, this book focuses on the second, which is to investigate solutions using tools from modern nonlinear analysis.

Topological Solitons

Topological Solitons PDF Author: Nicholas Manton
Publisher: Cambridge University Press
ISBN: 1139454692
Category : Science
Languages : en
Pages : 507

Get Book Here

Book Description
Topological solitons occur in many nonlinear classical field theories. They are stable, particle-like objects, with finite mass and a smooth structure. Examples are monopoles and Skyrmions, Ginzburg-Landau vortices and sigma-model lumps, and Yang-Mills instantons. This book is a comprehensive survey of static topological solitons and their dynamical interactions. Particular emphasis is placed on the solitons which satisfy first-order Bogomolny equations. For these, the soliton dynamics can be investigated by finding the geodesics on the moduli space of static multi-soliton solutions. Remarkable scattering processes can be understood this way. The book starts with an introduction to classical field theory, and a survey of several mathematical techniques useful for understanding many types of topological soliton. Subsequent chapters explore key examples of solitons in one, two, three and four dimensions. The final chapter discusses the unstable sphaleron solutions which exist in several field theories.

Soliton Theory and Its Applications

Soliton Theory and Its Applications PDF Author: Chaohao Gu
Publisher: Springer Science & Business Media
ISBN: 3662031027
Category : Mathematics
Languages : en
Pages : 414

Get Book Here

Book Description
Soliton theory is an important branch of applied mathematics and mathematical physics. An active and productive field of research, it has important applications in fluid mechanics, nonlinear optics, classical and quantum fields theories etc. This book presents a broad view of soliton theory. It gives an expository survey of the most basic ideas and methods, such as physical background, inverse scattering, Backlünd transformations, finite-dimensional completely integrable systems, symmetry, Kac-moody algebra, solitons and differential geometry, numerical analysis for nonlinear waves, and gravitational solitons. Besides the essential points of the theory, several applications are sketched and some recent developments, partly by the authors and their collaborators, are presented.

Solitons in Mathematics and Physics

Solitons in Mathematics and Physics PDF Author: Alan C. Newell
Publisher: SIAM
ISBN: 0898711967
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book Here

Book Description
A discussion of the soliton, focusing on the properties that make it physically ubiquitous and the soliton equation mathematically miraculous.

Theory of Nonlinear Lattices

Theory of Nonlinear Lattices PDF Author: Morikazu Toda
Publisher: Springer Science & Business Media
ISBN: 3642832199
Category : Science
Languages : en
Pages : 233

Get Book Here

Book Description
Soliton theory, the theory of nonlinear waves in lattices composed of particles interacting by nonlinear forces, is treated rigorously in this book. The presentation is coherent and self-contained, starting with pioneering work and extending to the most recent advances in the field. Special attention is focused on exact methods of solution of nonlinear problems and on the exact mathematical treatment of nonlinear lattice vibrations. This new edition updates the material to take account of important new advances.

Solitons, Nonlinear Evolution Equations and Inverse Scattering

Solitons, Nonlinear Evolution Equations and Inverse Scattering PDF Author: Mark J. Ablowitz
Publisher: Cambridge University Press
ISBN: 0521387302
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This book will be a valuable addition to the growing literature in the area and essential reading for all researchers in the field of soliton theory.

Hamiltonian Methods in the Theory of Solitons

Hamiltonian Methods in the Theory of Solitons PDF Author: Ludwig Faddeev
Publisher: Springer Science & Business Media
ISBN: 3540699694
Category : Science
Languages : en
Pages : 602

Get Book Here

Book Description
The main characteristic of this classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation is considered as a main example, forming the first part of the book. The second part examines such fundamental models as the sine-Gordon equation and the Heisenberg equation, the classification of integrable models and methods for constructing their solutions.

Differential Geometry And Physics - Proceedings Of The 23th International Conference Of Differential Geometric Methods In Theoretical Physics

Differential Geometry And Physics - Proceedings Of The 23th International Conference Of Differential Geometric Methods In Theoretical Physics PDF Author: Weiping Zhang
Publisher: World Scientific
ISBN: 9814476587
Category : Mathematics
Languages : en
Pages : 542

Get Book Here

Book Description
This volumes provides a comprehensive review of interactions between differential geometry and theoretical physics, contributed by many leading scholars in these fields. The contributions promise to play an important role in promoting the developments in these exciting areas. Besides the plenary talks, the coverage includes: models and related topics in statistical physics; quantum fields, strings and M-theory; Yang-Mills fields, knot theory and related topics; K-theory, including index theory and non-commutative geometry; mirror symmetry, conformal and topological quantum field theory; development of integrable systems; and random matrix theory.

Differential Geometry and Physics

Differential Geometry and Physics PDF Author: Mo-Lin Ge
Publisher: World Scientific
ISBN: 9812703772
Category : Mathematics
Languages : en
Pages : 542

Get Book Here

Book Description
This volumes provides a comprehensive review of interactions between differential geometry and theoretical physics, contributed by many leading scholars in these fields. The contributions promise to play an important role in promoting the developments in these exciting areas. Besides the plenary talks, the coverage includes: models and related topics in statistical physics; quantum fields, strings and M-theory; Yang-Mills fields, knot theory and related topics; K-theory, including index theory and non-commutative geometry; mirror symmetry, conformal and topological quantum field theory; development of integrable systems; and random matrix theory.

Nonlinear Analysis, Differential Equations, and Applications

Nonlinear Analysis, Differential Equations, and Applications PDF Author: Themistocles M. Rassias
Publisher: Springer Nature
ISBN: 3030725634
Category : Mathematics
Languages : en
Pages : 791

Get Book Here

Book Description
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers–Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg–Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdős-Rényi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.