Author: Veena S. Chakravarthi
Publisher: Springer Nature
ISBN: 3030981126
Category : Technology & Engineering
Languages : en
Pages : 173
Book Description
SoC Physical Design is a comprehensive practical guide for VLSI designers that thoroughly examines and explains the practical physical design flow of system on chip (SoC). The book covers the rationale behind making design decisions on power, performance, and area (PPA) goals for SoC and explains the required design environment algorithms, design flows, constraints, handoff procedures, and design infrastructure requirements in achieving them. The book reveals challenges likely to be faced at each design process and ways to address them in practical design environments. Advanced topics on 3D ICs, EDA trends, and SOC trends are discussed in later chapters. Coverage also includes advanced physical design techniques followed for deep submicron SOC designs. The book provides aspiring VLSI designers, practicing design engineers, and electrical engineering students with a solid background on the complex physical design requirements of SoCs which are required to contribute effectively in design roles.
SoC Physical Design
Author: Veena S. Chakravarthi
Publisher: Springer Nature
ISBN: 3030981126
Category : Technology & Engineering
Languages : en
Pages : 173
Book Description
SoC Physical Design is a comprehensive practical guide for VLSI designers that thoroughly examines and explains the practical physical design flow of system on chip (SoC). The book covers the rationale behind making design decisions on power, performance, and area (PPA) goals for SoC and explains the required design environment algorithms, design flows, constraints, handoff procedures, and design infrastructure requirements in achieving them. The book reveals challenges likely to be faced at each design process and ways to address them in practical design environments. Advanced topics on 3D ICs, EDA trends, and SOC trends are discussed in later chapters. Coverage also includes advanced physical design techniques followed for deep submicron SOC designs. The book provides aspiring VLSI designers, practicing design engineers, and electrical engineering students with a solid background on the complex physical design requirements of SoCs which are required to contribute effectively in design roles.
Publisher: Springer Nature
ISBN: 3030981126
Category : Technology & Engineering
Languages : en
Pages : 173
Book Description
SoC Physical Design is a comprehensive practical guide for VLSI designers that thoroughly examines and explains the practical physical design flow of system on chip (SoC). The book covers the rationale behind making design decisions on power, performance, and area (PPA) goals for SoC and explains the required design environment algorithms, design flows, constraints, handoff procedures, and design infrastructure requirements in achieving them. The book reveals challenges likely to be faced at each design process and ways to address them in practical design environments. Advanced topics on 3D ICs, EDA trends, and SOC trends are discussed in later chapters. Coverage also includes advanced physical design techniques followed for deep submicron SOC designs. The book provides aspiring VLSI designers, practicing design engineers, and electrical engineering students with a solid background on the complex physical design requirements of SoCs which are required to contribute effectively in design roles.
A Practical Approach to VLSI System on Chip (SoC) Design
Author: Veena S. Chakravarthi
Publisher: Springer Nature
ISBN: 3031183630
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
Now in a thoroughly revised second edition, this practical practitioner guide provides a comprehensive overview of the SoC design process. It explains end-to-end system on chip (SoC) design processes and includes updated coverage of design methodology, the design environment, EDA tool flow, design decisions, choice of design intellectual property (IP) cores, sign-off procedures, and design infrastructure requirements. The second edition provides new information on SOC trends and updated design cases. Coverage also includes critical advanced guidance on the latest UPF-based low power design flow, challenges of deep submicron technologies, and 3D design fundamentals, which will prepare the readers for the challenges of working at the nanotechnology scale. A Practical Approach to VLSI System on Chip (SoC) Design: A Comprehensive Guide, Second Edition provides engineers who aspire to become VLSI designers with all the necessary information and details of EDA tools. It will be a valuable professional reference for those working on VLSI design and verification portfolios in complex SoC designs
Publisher: Springer Nature
ISBN: 3031183630
Category : Technology & Engineering
Languages : en
Pages : 355
Book Description
Now in a thoroughly revised second edition, this practical practitioner guide provides a comprehensive overview of the SoC design process. It explains end-to-end system on chip (SoC) design processes and includes updated coverage of design methodology, the design environment, EDA tool flow, design decisions, choice of design intellectual property (IP) cores, sign-off procedures, and design infrastructure requirements. The second edition provides new information on SOC trends and updated design cases. Coverage also includes critical advanced guidance on the latest UPF-based low power design flow, challenges of deep submicron technologies, and 3D design fundamentals, which will prepare the readers for the challenges of working at the nanotechnology scale. A Practical Approach to VLSI System on Chip (SoC) Design: A Comprehensive Guide, Second Edition provides engineers who aspire to become VLSI designers with all the necessary information and details of EDA tools. It will be a valuable professional reference for those working on VLSI design and verification portfolios in complex SoC designs
VLSI Physical Design: From Graph Partitioning to Timing Closure
Author: Andrew B. Kahng
Publisher: Springer Nature
ISBN: 3030964159
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota
Publisher: Springer Nature
ISBN: 3030964159
Category : Technology & Engineering
Languages : en
Pages : 329
Book Description
The complexity of modern chip design requires extensive use of specialized software throughout the process. To achieve the best results, a user of this software needs a high-level understanding of the underlying mathematical models and algorithms. In addition, a developer of such software must have a keen understanding of relevant computer science aspects, including algorithmic performance bottlenecks and how various algorithms operate and interact. This book introduces and compares the fundamental algorithms that are used during the IC physical design phase, wherein a geometric chip layout is produced starting from an abstract circuit design. This updated second edition includes recent advancements in the state-of-the-art of physical design, and builds upon foundational coverage of essential and fundamental techniques. Numerous examples and tasks with solutions increase the clarity of presentation and facilitate deeper understanding. A comprehensive set of slides is available on the Internet for each chapter, simplifying use of the book in instructional settings. “This improved, second edition of the book will continue to serve the EDA and design community well. It is a foundational text and reference for the next generation of professionals who will be called on to continue the advancement of our chip design tools and design the most advanced micro-electronics.” Dr. Leon Stok, Vice President, Electronic Design Automation, IBM Systems Group “This is the book I wish I had when I taught EDA in the past, and the one I’m using from now on.” Dr. Louis K. Scheffer, Howard Hughes Medical Institute “I would happily use this book when teaching Physical Design. I know of no other work that’s as comprehensive and up-to-date, with algorithmic focus and clear pseudocode for the key algorithms. The book is beautifully designed!” Prof. John P. Hayes, University of Michigan “The entire field of electronic design automation owes the authors a great debt for providing a single coherent source on physical design that is clear and tutorial in nature, while providing details on key state-of-the-art topics such as timing closure.” Prof. Kurt Keutzer, University of California, Berkeley “An excellent balance of the basics and more advanced concepts, presented by top experts in the field.” Prof. Sachin Sapatnekar, University of Minnesota
Computer System Design
Author: Michael J. Flynn
Publisher: John Wiley & Sons
ISBN: 1118009916
Category : Computers
Languages : en
Pages : 271
Book Description
The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses the issues mentioned above. It begins with a global introduction, from the high-level view to the lowest common denominator (the chip itself), then moves on to the three main building blocks of an SOC (processor, memory, and interconnect). Next is an overview of what makes SOC unique (its customization ability and the applications that drive it). The final chapter presents future challenges for system design and SOC possibilities.
Publisher: John Wiley & Sons
ISBN: 1118009916
Category : Computers
Languages : en
Pages : 271
Book Description
The next generation of computer system designers will be less concerned about details of processors and memories, and more concerned about the elements of a system tailored to particular applications. These designers will have a fundamental knowledge of processors and other elements in the system, but the success of their design will depend on the skills in making system-level tradeoffs that optimize the cost, performance and other attributes to meet application requirements. This book provides a new treatment of computer system design, particularly for System-on-Chip (SOC), which addresses the issues mentioned above. It begins with a global introduction, from the high-level view to the lowest common denominator (the chip itself), then moves on to the three main building blocks of an SOC (processor, memory, and interconnect). Next is an overview of what makes SOC unique (its customization ability and the applications that drive it). The final chapter presents future challenges for system design and SOC possibilities.
UML for SOC Design
Author: Grant Martin
Publisher: Springer Science & Business Media
ISBN: 0387257454
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
A tutorial approach to using the UML modeling language in system-on-chip design Based on the DAC 2004 tutorial, applicable for students and professionals Contributions by top-level international researchers The best work at the first UML for SoC workshop Unique combination of both UML capabilities and SoC design issues Condenses research and development ideas that are only found in multiple conference proceedings and many other books into one place Will be the seminal reference work for this area for years to come
Publisher: Springer Science & Business Media
ISBN: 0387257454
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
A tutorial approach to using the UML modeling language in system-on-chip design Based on the DAC 2004 tutorial, applicable for students and professionals Contributions by top-level international researchers The best work at the first UML for SoC workshop Unique combination of both UML capabilities and SoC design issues Condenses research and development ideas that are only found in multiple conference proceedings and many other books into one place Will be the seminal reference work for this area for years to come
Modern System-on-Chip Design on Arm
Author: David Greaves
Publisher: Arm Education Media
ISBN: 9781911531364
Category :
Languages : en
Pages : 608
Book Description
SoC design has seen significant advances in the decade and Arm-based silicon has often been at the heart of this revolution. Today, entire systems including processors, memories, sensors and analogue circuitry are all integrated into one single chip (hence "System-on-Chip" or SoC). The aim of this textbook is to expose aspiring and practising SoC designers to the fundamentals and latest developments in SoC design and technologies using examples of Arm(R) Cortex(R)-A technology and related IP blocks and interfaces. The entire SoC design process is discussed in detail, from memory and interconnects through to validation, fabrication and production. A particular highlight of this textbook is the focus on energy efficient SoC design, and the extensive supplementary materials which include a SystemC model of a Zynq chip. This textbook is aimed at final year undergraduate students, master students or engineers in the field looking to update their knowledge. It is assumed that readers will have a pre-existing understanding of RTL, Assembly Language and Operating Systems. For those readers looking for a entry-level introduction to SoC design, we recommend our Fundamentals of System-on-Chip Design on Arm Cortex-M Microcontrollers textbook.
Publisher: Arm Education Media
ISBN: 9781911531364
Category :
Languages : en
Pages : 608
Book Description
SoC design has seen significant advances in the decade and Arm-based silicon has often been at the heart of this revolution. Today, entire systems including processors, memories, sensors and analogue circuitry are all integrated into one single chip (hence "System-on-Chip" or SoC). The aim of this textbook is to expose aspiring and practising SoC designers to the fundamentals and latest developments in SoC design and technologies using examples of Arm(R) Cortex(R)-A technology and related IP blocks and interfaces. The entire SoC design process is discussed in detail, from memory and interconnects through to validation, fabrication and production. A particular highlight of this textbook is the focus on energy efficient SoC design, and the extensive supplementary materials which include a SystemC model of a Zynq chip. This textbook is aimed at final year undergraduate students, master students or engineers in the field looking to update their knowledge. It is assumed that readers will have a pre-existing understanding of RTL, Assembly Language and Operating Systems. For those readers looking for a entry-level introduction to SoC design, we recommend our Fundamentals of System-on-Chip Design on Arm Cortex-M Microcontrollers textbook.
Essential Issues in SOC Design
Author: Youn-Long Steve Lin
Publisher: Springer Science & Business Media
ISBN: 1402053525
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
This book originated from a workshop held at the DATE 2005 conference, namely Designing Complex SOCs. State-of-the-art in issues related to System-on-Chip (SoC) design by leading experts in the fields, it covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.
Publisher: Springer Science & Business Media
ISBN: 1402053525
Category : Technology & Engineering
Languages : en
Pages : 405
Book Description
This book originated from a workshop held at the DATE 2005 conference, namely Designing Complex SOCs. State-of-the-art in issues related to System-on-Chip (SoC) design by leading experts in the fields, it covers IP development, verification, integration, chip implementation, testing and software. It contains valuable academic and industrial examples for those involved with the design of complex SOCs.
Interconnect-Centric Design for Advanced SOC and NOC
Author: Jari Nurmi
Publisher: Springer Science & Business Media
ISBN: 1402078366
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
In Interconnect-centric Design for Advanced SoC and NoC, we have tried to create a comprehensive understanding about on-chip interconnect characteristics, design methodologies, layered views on different abstraction levels and finally about applying the interconnect-centric design in system-on-chip design. Traditionally, on-chip communication design has been done using rather ad-hoc and informal approaches that fail to meet some of the challenges posed by next-generation SOC designs, such as performance and throughput, power and energy, reliability, predictability, synchronization, and management of concurrency. To address these challenges, it is critical to take a global view of the communication problem, and decompose it along lines that make it more tractable. We believe that a layered approach similar to that defined by the communication networks community should also be used for on-chip communication design. The design issues are handled on physical and circuit layer, logic and architecture layer, and from system design methodology and tools point of view. Formal communication modeling and refinement is used to bridge the communication layers, and network-centric modeling of multiprocessor on-chip networks and socket-based design will serve the development of platforms for SoC and NoC integration. Interconnect-centric Design for Advanced SoC and NoC is concluded by two application examples: interconnect and memory organization in SoCs for advanced set-top boxes and TV, and a case study in NoC platform design for more generic applications.
Publisher: Springer Science & Business Media
ISBN: 1402078366
Category : Technology & Engineering
Languages : en
Pages : 450
Book Description
In Interconnect-centric Design for Advanced SoC and NoC, we have tried to create a comprehensive understanding about on-chip interconnect characteristics, design methodologies, layered views on different abstraction levels and finally about applying the interconnect-centric design in system-on-chip design. Traditionally, on-chip communication design has been done using rather ad-hoc and informal approaches that fail to meet some of the challenges posed by next-generation SOC designs, such as performance and throughput, power and energy, reliability, predictability, synchronization, and management of concurrency. To address these challenges, it is critical to take a global view of the communication problem, and decompose it along lines that make it more tractable. We believe that a layered approach similar to that defined by the communication networks community should also be used for on-chip communication design. The design issues are handled on physical and circuit layer, logic and architecture layer, and from system design methodology and tools point of view. Formal communication modeling and refinement is used to bridge the communication layers, and network-centric modeling of multiprocessor on-chip networks and socket-based design will serve the development of platforms for SoC and NoC integration. Interconnect-centric Design for Advanced SoC and NoC is concluded by two application examples: interconnect and memory organization in SoCs for advanced set-top boxes and TV, and a case study in NoC platform design for more generic applications.
Algorithms for VLSI Physical Design Automation
Author: Naveed A. Sherwani
Publisher: Springer Science & Business Media
ISBN: 1461523516
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
Algorithms for VLSI Physical Design Automation, Second Edition is a core reference text for graduate students and CAD professionals. Based on the very successful First Edition, it provides a comprehensive treatment of the principles and algorithms of VLSI physical design, presenting the concepts and algorithms in an intuitive manner. Each chapter contains 3-4 algorithms that are discussed in detail. Additional algorithms are presented in a somewhat shorter format. References to advanced algorithms are presented at the end of each chapter. Algorithms for VLSI Physical Design Automation covers all aspects of physical design. In 1992, when the First Edition was published, the largest available microprocessor had one million transistors and was fabricated using three metal layers. Now we process with six metal layers, fabricating 15 million transistors on a chip. Designs are moving to the 500-700 MHz frequency goal. These stunning developments have significantly altered the VLSI field: over-the-cell routing and early floorplanning have come to occupy a central place in the physical design flow. This Second Edition introduces a realistic picture to the reader, exposing the concerns facing the VLSI industry, while maintaining the theoretical flavor of the First Edition. New material has been added to all chapters, new sections have been added to most chapters, and a few chapters have been completely rewritten. The textual material is supplemented and clarified by many helpful figures. Audience: An invaluable reference for professionals in layout, design automation and physical design.
Publisher: Springer Science & Business Media
ISBN: 1461523516
Category : Technology & Engineering
Languages : en
Pages : 554
Book Description
Algorithms for VLSI Physical Design Automation, Second Edition is a core reference text for graduate students and CAD professionals. Based on the very successful First Edition, it provides a comprehensive treatment of the principles and algorithms of VLSI physical design, presenting the concepts and algorithms in an intuitive manner. Each chapter contains 3-4 algorithms that are discussed in detail. Additional algorithms are presented in a somewhat shorter format. References to advanced algorithms are presented at the end of each chapter. Algorithms for VLSI Physical Design Automation covers all aspects of physical design. In 1992, when the First Edition was published, the largest available microprocessor had one million transistors and was fabricated using three metal layers. Now we process with six metal layers, fabricating 15 million transistors on a chip. Designs are moving to the 500-700 MHz frequency goal. These stunning developments have significantly altered the VLSI field: over-the-cell routing and early floorplanning have come to occupy a central place in the physical design flow. This Second Edition introduces a realistic picture to the reader, exposing the concerns facing the VLSI industry, while maintaining the theoretical flavor of the First Edition. New material has been added to all chapters, new sections have been added to most chapters, and a few chapters have been completely rewritten. The textual material is supplemented and clarified by many helpful figures. Audience: An invaluable reference for professionals in layout, design automation and physical design.
VLSI Design Methodology Development
Author: Thomas Dillinger
Publisher: Prentice Hall
ISBN: 0135657687
Category : Technology & Engineering
Languages : en
Pages : 857
Book Description
The Complete, Modern Tutorial on Practical VLSI Chip Design, Validation, and Analysis As microelectronics engineers design complex chips using existing circuit libraries, they must ensure correct logical, physical, and electrical properties, and prepare for reliable foundry fabrication. VLSI Design Methodology Development focuses on the design and analysis steps needed to perform these tasks and successfully complete a modern chip design. Microprocessor design authority Tom Dillinger carefully introduces core concepts, and then guides engineers through modeling, functional design validation, design implementation, electrical analysis, and release to manufacturing. Writing from the engineer’s perspective, he covers underlying EDA tool algorithms, flows, criteria for assessing project status, and key tradeoffs and interdependencies. This fresh and accessible tutorial will be valuable to all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. Reflect complexity, cost, resources, and schedules in planning a chip design project Perform hierarchical design decomposition, floorplanning, and physical integration, addressing DFT, DFM, and DFY requirements Model functionality and behavior, validate designs, and verify formal equivalency Apply EDA tools for logic synthesis, placement, and routing Analyze timing, noise, power, and electrical issues Prepare for manufacturing release and bring-up, from mastering ECOs to qualification This guide is for all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. It is applicable to engineering teams undertaking new projects and migrating existing designs to new technologies.
Publisher: Prentice Hall
ISBN: 0135657687
Category : Technology & Engineering
Languages : en
Pages : 857
Book Description
The Complete, Modern Tutorial on Practical VLSI Chip Design, Validation, and Analysis As microelectronics engineers design complex chips using existing circuit libraries, they must ensure correct logical, physical, and electrical properties, and prepare for reliable foundry fabrication. VLSI Design Methodology Development focuses on the design and analysis steps needed to perform these tasks and successfully complete a modern chip design. Microprocessor design authority Tom Dillinger carefully introduces core concepts, and then guides engineers through modeling, functional design validation, design implementation, electrical analysis, and release to manufacturing. Writing from the engineer’s perspective, he covers underlying EDA tool algorithms, flows, criteria for assessing project status, and key tradeoffs and interdependencies. This fresh and accessible tutorial will be valuable to all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. Reflect complexity, cost, resources, and schedules in planning a chip design project Perform hierarchical design decomposition, floorplanning, and physical integration, addressing DFT, DFM, and DFY requirements Model functionality and behavior, validate designs, and verify formal equivalency Apply EDA tools for logic synthesis, placement, and routing Analyze timing, noise, power, and electrical issues Prepare for manufacturing release and bring-up, from mastering ECOs to qualification This guide is for all VLSI system designers, senior undergraduate or graduate students of microelectronics design, and companies offering internal courses for engineers at all levels. It is applicable to engineering teams undertaking new projects and migrating existing designs to new technologies.