SNS LINAC RF Control System

SNS LINAC RF Control System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
The SNS linac RF control system (RFCS) is currently in development. A system is being installed in a superconducting test stand at Jefferson Laboratory presently. Two systems will soon be installed at Oak Ridge National Laboratory (ORNL) and more are due to be installed early next year. The RF control system provides field control for the entire SNS linac, including an RFQ and 6 DTL cavities at 402.5 MHz as well as three different types of cavities at of 805 MHz: 4 CCL cavities, 36 medium beta superconducting (SRF) cavities, and 45 high beta superconducting cavities. In addition to field control, it provides cavity resonance control, and incorporates high power protect functions. This paper will discuss the RFCS design to date, with emphasis on the challenges of providing a universal digital system for use on each of the individual cavity types. The RF control system hardware has been designed to minimize the amount of changes for all of the applications. Through software/firmware modification and changing a couple of frequency-dependent filters, the same control system design can be used for all five cavity types. The SNS is the first to utilize SRF cavities for a pulsed high-current proton accelerator, thereby making RF control especially challenging.

SNS LINAC RF Control System

SNS LINAC RF Control System PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
The SNS linac RF control system (RFCS) is currently in development. A system is being installed in a superconducting test stand at Jefferson Laboratory presently. Two systems will soon be installed at Oak Ridge National Laboratory (ORNL) and more are due to be installed early next year. The RF control system provides field control for the entire SNS linac, including an RFQ and 6 DTL cavities at 402.5 MHz as well as three different types of cavities at of 805 MHz: 4 CCL cavities, 36 medium beta superconducting (SRF) cavities, and 45 high beta superconducting cavities. In addition to field control, it provides cavity resonance control, and incorporates high power protect functions. This paper will discuss the RFCS design to date, with emphasis on the challenges of providing a universal digital system for use on each of the individual cavity types. The RF control system hardware has been designed to minimize the amount of changes for all of the applications. Through software/firmware modification and changing a couple of frequency-dependent filters, the same control system design can be used for all five cavity types. The SNS is the first to utilize SRF cavities for a pulsed high-current proton accelerator, thereby making RF control especially challenging.

DESIGN OF THE SNS NORMAL CONDUCTING LINAC RF CONTROL SYSTEM.

DESIGN OF THE SNS NORMAL CONDUCTING LINAC RF CONTROL SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
The Spallation Neutron Source (SNS) is in the process of being, designed for operation in 2004. The SNS is a 1 GeV machine consisting of both a normal-conducting and super-conducting linac as well as a ring and target area The linac front end is a 402.5 MHz RFQ being developed by Lawrence Berkeley Lab. The DTL, being developed at Los Alamos National Laboratory, is also a copper structure operating at 402.5 MHz, with an 805 MHz CCL structure downstream of it. The expected output energy of the DTL is 87 MeV and that of the CCL is 185 MeV. The RF control system under development for the linac is based on the Low Energy Demonstration Accelerator's (LEDA) control system with some new features. This paper will discuss the new design approach and its benefits. Block diagrams and circuit specifics will be addressed. The normal conducting RF control system will be described in detail with reference to the super-conducting control system when appropriate.

EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SORUCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR.

EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SORUCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within ±0.5% and ±0.5 . This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin.

EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR.

EXCESS RF POWER REQUIRED FOR RF CONTROL OF THE SPALLATION NEUTRON SOURCE (SNS) LINAC, A PULSED HIGH-INTENSITY SUPERCONDUCTING PROTON ACCELERATOR. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
A high-intensity proton linac, such as that being planned for the SNS, requires accurate RF control of cavity fields for the entire pulse in order to avoid beam spill. The current design requirement for the SNS is RF field stability within "0.5% and "0.5{sup o} [1]. This RF control capability is achieved by the control electronics using the excess RF power to correct disturbances. To minimize the initial capital costs, the RF system is designed with 'just enough' RF power. All the usual disturbances exist, such as beam noise, klystron/HVPS noise, coupler imperfections, transport losses, turn-on and turn-off transients, etc. As a superconducting linac, there are added disturbances of large magnitude, including Lorentz detuning and microphonics. The effects of these disturbances and the power required to correct them are estimated, and the result shows that the highest power systems in the SNS have just enough margin, with little or no excess margin.

AN AVAILABILITY MODEL FOR THE SNS LINAC RF SYSTEM.

AN AVAILABILITY MODEL FOR THE SNS LINAC RF SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The Linac RF system is broken down into eight major components for this model. These components are: the klystrons, the waveguide, the water loads, the circulators, the converter/modulator, the transmitter, the window, and the low level RF (LLRF) controls. The mean time between failures (MTBF) for several of the components vary with voltage or klystron power level, and this variation is discussed below. In general, these MTBF's are design requirements supplied to the vendors of the subsystems, and verified at design reviews and by the experience at other accelerators. We assume that the scheduled operational time for the SNS is 6000 hours per year, and use this number to calculate the availability. We have to calculate the total down time during the 6000 hours of operation, and the availability is defined as one minus the unexpected down time for the year, divided by the number of operating hours in the year. Ideally, we would use distributions of MTBF's and MTTR's, since each failure will be different, but the equipment is not yet built, so the distributions are not available, and we make the assumption of constant MTBF and MTTR.

UNCERTAIN SYSTEM MODELING OF SNS RF CONTROL SYSTEM.

UNCERTAIN SYSTEM MODELING OF SNS RF CONTROL SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This paper addresses the modeling problem of the linear accelerator RF system for SNS. The cascade of the klystron and the cavity is modeled as a nominal system. In the real world, high voltage power supply ripple, Lorentz Force Detuning, microphonics, cavity RF parameter perturbations, distortions in RF components, and loop time delay imperfection exist inevitably, which must be analyzed. The analysis is based on the accurate modeling of the disturbances and uncertainties. In this paper, a modern control theory is applied for modeling the disturbances, uncertainties, and for analyzing the closed loop system robust performance.

SYSTEM IDENTIFICATION OF THE LINAC RF SYSTEM USING A WAVELET METHOD AND ITS APPLICATIONS IN THE SNS LLRF CONTROL SYSTEM.

SYSTEM IDENTIFICATION OF THE LINAC RF SYSTEM USING A WAVELET METHOD AND ITS APPLICATIONS IN THE SNS LLRF CONTROL SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
For a pulsed LINAC such as the SNS, an adaptive feed-forward algorithm plays an important role in reducing the repetitive disturbance caused by the pulsed operation conditions. In most modern feed-forward control algorithms, accurate real time system identification is required to make the algorithm more effective. In this paper, an efficient wavelet method is applied to the system identification in which the Haar function is used as the base wavelet. The advantage of this method is that the Fourier transform of the Haar function in the time domain is a sine function in the frequency domain. Thus we can directly obtain the system transfer function in the frequency domain from the coefficients of the time domain system response.

ANALYSIS OF THE SNS SUPERCONDUCTING RF CONTROL SYSTEM.

ANALYSIS OF THE SNS SUPERCONDUCTING RF CONTROL SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description


CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM.

CONTROL SYSTEM ANALYSIS FOR THE PERTURBED LINEAR ACCELERATOR RF SYSTEM. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This paper addresses the modeling problem of the linear accelerator RF system in SNS. Klystrons are modeled as linear parameter varying systems. The effect of the high voltage power supply ripple on the klystron output voltage and the output phase is modeled as an additive disturbance. The cavity is modeled as a linear system and the beam current is modeled as the exogenous disturbance. The output uncertainty of the low level RF system which results from the uncertainties in the RF components and cabling is modeled as multiplicative uncertainty. Also, the feedback loop uncertainty and digital signal processing signal conditioning subsystem uncertainties are lumped together and are modeled as multiplicative uncertainty. Finally, the time delays in the loop are modeled as a lumped time delay. For the perturbed open loop system, the closed loop system performance, and stability are analyzed with the PI feedback controller.

Spallation Neutron Source High-power Rf Transmitter Design for High Availablility, Ease of Installation and Cost Containment

Spallation Neutron Source High-power Rf Transmitter Design for High Availablility, Ease of Installation and Cost Containment PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 3

Get Book Here

Book Description
The availability goals and installation schedule for the Spallation Neutron Source (SNS) have driven the availability and installation of the SNS linac's high-power RF systems. This paper discusses how the high-power RF systems' availability and installation goals have been addressed in the RF transmitter design and procurement. Design features that allow R1; component failures to be quickly diagnosed and repaired are also presented. Special attention has been given lo interlocks, PLC fault logging and real-time interfaces to thc accelerator's Experimental Physics and Industrial Control System (EPICS) archive system. The availability and cost motivations for the use of different RF transmitter designs in the normalconducting and super-conducting sections of the linac are reviewed. Factory iicceptance tests used to insure fully functional equipment and thereby reduce the time spent on installation and cotnmissioning of the RF transmitters are discussed. Transmitter installation experience and klystron conditioning experience is used to show how these design features have helped and will continue to help the SNS linac to meet its availability and schedule goals.